
B-1

B-1

CSE142
Computer Programming I

A board was cut in two.

The first part was 2/3 of the
length of the original board.

The second part was four
feet longer than the first.

How long was the board?

B-2

Problems, Algorithms, and Programs

© 2000 UW CSE

CSE 142
Computer Programming I

B-3

CSE142
Computer Programming I

A board was cut in two.
The first part: 2/3 board.
The second part: 1st + 4.
How long was the board?

This is a math word problem.
There are (at least) two
answers here.

What are they?
B-4

Overview

High-level survey
• Problems, algorithms, and programs
• Problem solving and program design
• Compiling and running a C program
• Errors and debugging

Focus on the big ideas
• Many details to cover in future lectures

B-5

Key Definitions/Concepts

Problem
•Definition of task to be performed (often by a computer)

Algorithm
•A particular sequence of steps that will solve a problem
•Steps must be precise and mechanical
•The notion of an algorithm is a (the?) fundamental
intellectual concept associated with computing

Program
•An algorithm expressed in a specific computer
programming language (C, C++, Java, Perl, …)

Remember Turing?
He helped define what an algorithm is.

B-6

Programming vs. Cooking

Make chocolate chip cookiesProblem

Recipe written in a specific
language (English, Russian,
Chinese, Latvian, etc.)

Program

RecipeAlgorithm

CookingProgramming

B-2

B-7

Problem Solving

Clearly specify the problem
Analyze the problem
Design an algorithm to solve the
problem
Implement the algorithm (write the
program)
Test and verify the completed program

B-8

A Sample Problem

Is a given number even or odd?

B-9

Analysis

What numbers are allowed?
Where does the number come
from?

What do “even” and “odd” mean?
How is the answer to be reported?

B-10

More Precise Problem
Restatement
Given an integer number typed in from

the keyboard,
If it is even, write “even” on the screen
If it is odd, write “odd” on the screen

B-11

An Algorithm

Read in the number
Divide the number by 2
If the remainder is 0, write “even”
Otherwise, write “odd”

Test: 234784832792543

An alternate algorithm:
If the rightmost digit is 0, 2, 4, 6, or 8, write
“even”
Otherwise, write “odd” B-12

Next, a C Program

Now that we have an algorithm, we
would like to write a C program to
carry it out.

But first, what is a program? In fact,
what is a computer?

B-3

B-13

Central
Processing

Unit

Main
Memory

Monitor

Network

Disk (Files)

Keyboard mouse

Review: What is a computer?

CPU or processor: executes simple
instructions manipulating values in memory

B-14

What is a Program?

The CPU executes instructions one after the
other.

Such a sequence of instructions is called a
“program” (also "software" or "code")

Without a program, the computer is just
useless hardware

Complex programs may contain millions of
instructions

Lots of terminology here..
Any guesses what the “wetware” might be?

B-15

Memory

Memory is a collection of locations

Within a program, the locations are called variables

Each variable has
A name (an identifier)
A type (the kind of information it can contain)

Basic types include
int (integers – whole numbers: 17, -42)
double (floating-point numbers with optional fraction
and/or exponent: 3.14159, 6.02e23)
char (character data: 'a', '?', 'N', ' ', '9')

B-16

Program Sketch
Ask the user to enter a number
Read the number and call it num

Divide num by 2 and call the remainder rem

If rem is 0 write “even” otherwise write
“odd”

The actual program has LOTS of details – IGNORE THEM
FOR NOW

Pay attention to the main ideas

B-17

The Program in C (part I)
/* read a number and report whether it is even or

odd */
#include <stdio.h>

int main (void) {
int num; /* input number */
int rem; /* remainder after division by 2 */

/* get number from user */
printf("Please enter a number: ");
scanf("%d", &num);

B-18

The Program in C (part II)
/* calculate remainder and report even or odd */
rem = num % 2;
if (rem == 0) {

printf("even\n");
} else {

printf("odd\n");
}

/* terminate program */
return 0;

}

Remember: Don’t sweat the details!!! (for now)

B-4

B-19

Sample Execution

B-20

A Quick Look at the Program

Text surrounded by /*
and */ are comments
Used to help the reader
understand the program
Ignored during program
execution

Programs change over
time. It’s important
that programmers be
able to understand old
code - good comments
are essential.

/* read a number … */
#include <stdio.h>
int main (void) {

int num; /* input number */
int rem; /* remainder …*/
/* get number from user */
printf("Please enter a number: ");
scanf("%d", &num);
/* calculate remainder … */
rem = num % 2;
if (rem == 0) {

printf("even\n");
} else {

printf("odd\n");
}
/* terminate program */
return 0;

}

B-21

Variables
Variable declarations
create new variables
and specify their
names and types.

/* read a number … */
#include <stdio.h>
int main (void) {

int num; /* input number */
int rem; /* remainder …*/
/* get number from user */
printf("Please enter a number: ");
scanf("%d", &num);
/* calculate remainder … */
rem = num % 2;
if (rem == 0) {

printf("even\n");
} else {

printf("odd\n");
}
/* terminate program */
return 0;

}
B-22

Statements
Following the declarations
are statements that specify
the operations the program is
to carry out

Lots of different kinds
Some (if, else, return) are part
of the C language proper
Others (scanf, printf) are
contained in libraries of
routines that are available for
use in our programs
For now, don’t worry too much
about the distinction

/* read a number … */
#include <stdio.h>
int main (void) {

int num; /* input number */
int rem; /* remainder …*/
/* get number from user */
printf(“Please enter a number: ”);
scanf(“%d”, &num);
/* calculate remainder … */
rem = num % 2;
if (rem == 0) {

printf(“even\n”);
} else {

printf(“odd\n”);
}
/* terminate program */
return 0;

}

B-23

Functions
Functions are
sequences of
statements defined
elsewhere. Some
functions (such as printf
and scanf here) are
provided with the
system. We will also
learn how to write and
use our own functions.

/* read a number … */
#include <stdio.h>
int main (void) {

int num; /* input number */
int rem; /* remainder …*/
/* get number from user */
printf(“Please enter a number: ”);
scanf(“%d”, &num);
/* calculate remainder … */
rem = num % 2;
if (rem == 0) {

printf(“even\n”);
} else {

printf(“odd\n”);
}
/* terminate program */
return 0;

}
B-24

Boilerplate
Some parts of the
program are standard
utterances that need
to be included at the
beginning and end.

We’ll explain all of
this eventually
Just copy it for now in
each of your
programs

/* read a number … */
#include <stdio.h>
int main (void) {

int num; /* input number */
int rem; /* remainder …*/
/* get number from user */
printf("Please enter a number: ");
scanf("%d", &num);
/* calculate remainder … */
rem = num % 2;
if (rem == 0) {

printf("even\n");
} else {

printf("odd\n");
}
/* terminate program */
return 0;

}

B-5

B-25

From C to Machine Language
The computer’s processor only understands
"executable" programs written in its own
machine language

Sequences of 1’s and 0’s
Different for each processor family (x86, PowerPC,
SPARC, ARM, …)

How can the CPU obey instructions written
in C?

B-26

Compilers and Linkers
There are two steps in creating an executable
program starting from C source code

A program called the C compiler translates the C code
into an equivalent program in the processor’s machine
language (1’s and 0’s)

A program called the linker combines this translated
program with any library files it references (printf, scanf,
etc.) to produce an executable machine language program
(.exe file)

Environments like Visual Studio do both steps
when you “build” the program

B-27

Compilers, Linkers, etc.

library
(ANSI)header

(stdio.h)

executable
program

c
o
m
p
i
l
e
r

l
i
n
k
e
r

source
code

object
code

.c file 0110
1000
1101

debugger

B-28

What Could Possibly Go Wrong?

Lots!

Things are rarely perfect on the first attempt

Both the compiler and linker could detect errors

Even if no errors are detected, logic errors
(“bugs”) could be lurking in the code

Getting the bugs out is a challenge even for
professional software developers

B-29

Terms: Syntax vs Semantics
Syntax:Syntax: the required form of the program

punctuation, keywords (int, if, return, …), word
order, etc.

The C compiler always catches these “syntax
errors” or “compiler errors”

Semantics (logic): what the program means
what you want it to do
The C compiler cannot catch these kinds of
errors!
They can be extremely difficult to find
They may not show up right away

B-30

Try It Yourself!

Type in the even/odd program

First get it working. Then see what
happens when you:

Leave off a few semicolons or misspell
something (syntax)

In the last printf statements, change “odd” to
“even”. Run the program. What happens if
you enter 17? (semantics)

Experiment and see what happens

B-6

B-31

Wow!!

We’ve covered a lot of new ideas
Algorithms and programs
Computer organization and memory
The basic components of C programs
Comments, declarations, statements
Compilers, linkers, libraries, and program
execution
Errors

Lots of terminology, too

B-32

What’s Next?

Upcoming lectures: review what we’ve
seen today and fill in details

Meanwhile, get started reading and
trying things on the computer!

B-33

QOTD: Playing with Syntax
and Semantics

Imagine a game or a sport that you like to
play. Or, use musical scores.

Now, in that domain (game, sport, or music):
– Describe in words what the difference between a

syntax error and a semantic error would be.
– Give an example of a semantic error.

Can you think of a really great example?
Post it to the newsgroup!

