CSE 142
Programming |

Input/Output,
Libraries,
and Files

© 2000 UW CSE

Textbook Readings

» L oose ends; combination of review and
scattered textbook material
e Libraries:
— Chapter 2 (hereand there)
— Chapter 13.2 (skim)
* Files:
— Chapter 2.7 pp. 72-74
— Chapter 5.5 pp. 234-236
— Chapter 12.1

3/6/00 Q2

Review: what's

input/output?
% J— b Central Monitor
Disk (files) foﬁiﬁflng

Main
Memory Keyboard

Network

3/6/00 Q3

S

Why File 1/0?

eLarge volume of input data
eLarge volume of output data
eMore permanent storage of data
eTransfer to other programs

eMultiple simultaneous input and/or
output streams

3/6/00 Q4

Files

» A "file" is a collection of data on disk
— managed by the user and the operating system
— permanent

e A "file name" is how the user and OS know
the file
— follows OS naming rules (DOS: 8.3)
» We'll review the files used in compiling
» We'll review keyboard I1/0
» We'll look at using text files in a C program
First we'll look at data files

3/6/00 Q5

DATA FILES

* BusinessData: customer files, payrall files, ...

e Scientific Data: weather data, environmental
data, topographic maps, ...

» Image Data: web images, satelliteimages,
medical images, ...

* Web Data: HTML, GIF, JPEG, PNG, XML, ...

3/6/00 Q6

Business Data File

NAME SSN BIRTH ADDRESS
John Jones 532456895 | 7/1/75 | 916 4th NE, Seattle 98105
Sally Smith|872996547| 9/3/79 | 526 5th NE, Sesttle 98105

Scientific Data File

X Y ELEVATION RAINFALL
300 450 1900 3.45
275 900 300 12.62

Review: Files Used in Compiling

*Source Files
—.c files: C programs and functions
—h ("header") files: fragments of C code

real-world projects may contain hundreds
of source files!

*Compiled Files (system-dependent
names)

—object files: compiled C code ready to link

—libraries: collections of compiled C
functions

—executable files: linked machine-language,
ready to load into memory

3/6/00 Q9

Header files (.h)

rFragments of C code: B2

‘ hw.c ‘ ‘GP142-h ‘ ‘ GP142.C‘

—Global Variable Declarations

—Type Definitions (typedef)

.exe file

3/6/00

—Function Prototypes \ l /\
—Symbolic Constants -

Libraries

Files of compiled, pre-written functions
Why?
Reuse existing code
Enhance portability

Hide system
dependencies

Standard
Libraries

MSCV local

libraries libraries

3/6/00 Q11

Keyboard I/0O Dangers

What happens if the user types A in the following
situation?

int score ;

scanf(“%d”, &score) ;
while (score !=0) { input buffer
printf(*%d \n”, score) ;

scanf(“%d”, &score) ;

3/6/00

scanf’s Return Value

escanf returns an int

—tells the number of values successfully read: see
Section 5.5.

—Can be used to see if the number of values read is the
number expected. If not, there must have been an error.

int status, id, score ;
double grade ;
status = scanf(“%d %lIf %d", &id, &grade, &score) ;
if (status < 3)
printf(“Error in input \n”) ;

More Robust Input

/* Robustly read an integer, consuming nondigits */

int read_int (void)

int status, input ;

char junk;

status = scanf(*%d", &input) ;

while (status < 1) { * unsuccessful read */
scanf(*%c”, &junk) ; /* consume 1 char */
status = scanf(“%d", &input); /+tryagain*

}
return(input) ;

Files as Streams of Characters

keyboard/screen are special cases
input / output streams of characters

abclg 12 error\n
S| program e
hx1198s —7| varidbles [~12 13,13
*

Multiple streams can be used simultaneously

In reality, stream flows through a buffer rather
than directly into or out of variables.

3/6/00 Q15

Files as Records with Fields

Business and Scientific Data

datafile 1 program | | merged file
structure

3/6/00 Q16

Files vs. File Variables

* Reminders:
—Afile is a collection of data on disk

— A file name is how the user and OS know
the file

* permanent name, follows OS naming rules
» Afile variable is a variable in the C
program which represents the file
—temporary: exists only when program runs
—follows C naming rules

3/6/00 Q17

What's in stdio.h?

*Prototypes for 1/O functions.
*Definitions of useful #define constants
—Example: EOF for End of File

*Definition of FILE struct to represent
information about open files.

—File variables in C are pointers to the FILE
struct.

FILE *myfile;

3/6/00 Q18

Opening A File

* "Opening" a file: making a connection
between the operating system (file
name) and the C program (file variable)
—library function fopen
—specify "r" (read, input) or "w" (write,

output)
« NB String “r”, not char ‘r’ !

Files must be opened before they can
be used

Files stdin/stdout (used by scanf/printf)
are automatically opened & connected
to the keyboard and display

3/6/00 Q19

File Open Example

[*usually done only once in a program*/
[*usually done near beginning of program*/

FILE *infilep, *outfilep; /*file variables*/
char ch;

/* Open input and output files */
infilep =fopen (“Student_Data”, “r');
outfilep = fopen (“New_Student_Data”, “w") ;

3/6/00 Q20

Closing A File

*Usually done only once in a program
*Usually done near end of program

*Closing an output file is essential, or data may be
lost!

FILE *infilep; /*file variable*/

infilep =fopen (“Student_Data”, “r);
...I"process the file */

..."when completely done with the file:*/
(infilep);

3/6/00 Q21

End of File (EOF)

«defined in stdio.h
*#define EOF (some negative value)
—Usually -1 (but don’t depend on its value)

—I/O library routines use EOF in various ways
to signal end of file.

—Your programs can check for EOF

*EOF is a status, not an input value

3/6/00 Q22

Four Essential Functions for
Text 1/O

«fopen and fclosed: already discussed

«fscanf: works just like scanf, but 1st parameter is a file
variable

status = fscanf (filepi, “%...", &var, ...) ;
I* fscanf returns EOF on end of file */

«fprintf: works just printf, but 1st parameter is a file
variable

fprintf (filepo, “%...”, var, ...) ;

*File must already be open before before fsca%’gr fpriogstf is
used!

Building Applications with
Files

*With fopen, fclose, fprintf, and fscanf you can
write lots of useful programs involving files

*Many errors and exceptions can arise when
using files

—A robust program must handle errors
eLecture packet has a few examples
—not necessarily complete

*See textbook for more examples

3/6/00 Q24

File Copy Example

/* Problem: copy an input file to an output file */
/* Technique: loop, copying one char at a time until EOF*/
/* files must already be open before this*/
status = fscanf (infilep, “%c”, &ch);
while (status != EOF) {
fprintf (outfilep, “%c”, ch) ;
status = fscanf (infilep, “%c”, &ch);
}
printf (“File copied.\n”) ;
fclose (infilep) ;
fclose (outfilep) ;

File Copy (Compact Edition)

/* Many C programmers use this style*/
while (fscanf (infilep, “%c”, &ch) != EOF)
fprintf (outfilep, “%c”, ch) ;

printf (“File copied.\n”) ;
fclose (infilep) ;
fclose (outfilep) ;

File Example: Implementing a Database Query

#include <stdio.h>

int main(void)
F“LEQ'"" outp: Equivalent query in SQL
char name[20], ssn[9], ch; database language:
inp = fopen (“do_file", “r") :
outp = fopen (‘result_file”, “w") ; SELECT NAME, SSN
FROM DB_FILE
1* loop till the end-of-file * / WHERE AGE > 20;

while (fscanf (inp, *%c”, &name{0]) = EOF) {

/* read pame, s
for(j=1; j<

18 fcani(inp, e, anamef):
for (= o 1<9; j+4) fscanf(inp, "%c” &ssnl);
fscan(np, e);

/*read hﬂe feeri(‘hava("ev /

fscanf(inp, “%c”, &ch);

/* copy name, ssn to output if age > 20 */

if (age > 20) {
for (=0;j< 20 j++) fprintf(outp, “%c", name[]);
for (1= 0;] < j++) fprinti(outp, “%c, ssnfl);
fprintf(outp, "\n°);

felose (inp) ; fclose (outp) ;
return (0);

3/6/00 Q27

foput; abitc

. t

File Example: N

Expanding tabs

#include <stdio.h>

int main(void)

{ EILaE infilep, *outfilep;
int column = 0;
[* Open input and output files */
mﬁ\g \%u ?ugpu ‘)
oum\ep = fopen “tabless-prog.c”, “V\/’ H

/* process each input character */
wh\\e((fscanf(mfgﬁp r“ &ch) 1= EOF }{

I*Denrﬂ of line: reset column counter */
fprintf oume “%c", ch;
}el elte if (cl i)
/*tab output one or more spaces, */
I*Dto reach the next multiple of 8.
éjmntfrg'oum\ep “%c”,*)
wh\\e ((colimn % 8) 1=0);
te /* all others count it, and copy it out */

colum
fprintf (outﬂ\ep “%c", ch) ;

Output: ab ¢
def

L il
idose ég B

3/6/00 Q28

File Example: Merging two sorted files

#include <stdio.h>
fidefine MAXLINE 10000 I*ASSUMES no line longer'/
int main(void)
{ FILEinlp, *in2p, *ou

char buffer l[MAXL\NE] ‘buffer2[MAXLINE], "\ <

really should CHECK
h

char *stat1, *

in1p = fopen (‘sorted-file1
in2p = fopen (‘sorted-file2
outp = fopen (‘mergec-fie’

statl = fgets(buffer1, MAXLINE, in1p);
stat2 = fgets{buffer2, MAXLINE, in2p):
while (statl = NULL && stat2 1= NULL)
if (st mmp(bufferl buffer2) <0) {
rintf (outp, “3%s", buffer’

1)
o smu = rgam(b«ffen MAxuN:j/lp)

fprintf (outp, *%s”, buffe

12
O R weiers MARINE in2p);

While(statl 1= NULL) {

fprintf (outp, “%s", buffer1) ;

statl = fgets(buffer1, MAXLINE, in1p);
whie(sia = NULL)

fprintf (outp, “%s", buffer2) ;

a2 = Tosbuters, N, in2p);

fclose gnlp)‘ fclose (in2p) ; fclose (outp) ;
retum 0;

3/6/00 Q29

