CSE 142
Programming |

Sorting

© 2000 UW CSE

Sorting

eThe problem: put things in order
eUsually smallest to largest: “ascending”
*Could also be largest to smallest: “descending”
eMore formally:
*Given an array a[0], a[1], ... a[n-1],
reorder entries so that
a[0] <= a[1] <= ... <= a[n-1]
eShorthand for these slides: the notation

arrayl[i..k] means all of the elements
arrayli],array[i+1]...array[K]

oThis is not C syntax!
eThe array above would then be a[0..n-1] *® .

Sorting

el ots of applications
eordering hits in web search engine
epreparing lists of output
emerging data from multiple sources
oto help solve other problems
ofaster search (allows binary search)
#t00 many to mention!

eSorting has been intensively studied for
decades

-Man?/ different ways to do it! We'll look at
two algorithms

eMore in CSE143, CSE373, CSE326... #*® .,

Sorting Problem

 What we want: Data sorted in order
0 n

a‘ sorted: a[0]<=a[l]<=...<=a[n-1]

* |nitial conditions

0 n

a unsorted

“Selection Sort”

* General situation
0 k n

a‘smallest elements, sorted ‘ remainder, unsorted

» Step:
— Find smallest element x in a[k..n-1]

— Swap smallest element with a[k], then

increase k
k n

a| smallest elements, sorted ‘ ‘ ‘x‘ ‘

@
<
8

Subproblem: Find Smallest

/* Yield location of smallest element in a[k..n-1] */

/¥ Assumption: k <n */

/* Returns index of smallest, does not return the
smallest value itself */

int min_loc (int a[], intk, int n) {
int j, pos; /*a[pos] is smallest element */
/* found so far */
pos =k;
for(j=k+1;j<n;j=j+1)
if (ali] < a[pos])
pos =j;
return pos;

} 3/3/00

Code for Selection Sort

/* Sort a[0..n-1] in non-decreasing order (rearrange
elements in a so that a[0]<=a[1]<=...<=a[n-1]) */
int sel_sort (int a[], int n) {
int k, m;
for(k=0;k<n-1;k=k+1){
m = min_loc(a,k,n);
swap(&a[k], &a[m]);
}
}

Example

al 3| 12| -5| 6 [142] 21|-17| 45

al|17| 12| -5 6 [142| 21| 3 (45

al17| 5|12 | 6 [142| 21| 3 (45

Example (cont)

all7| 5| 3 | 6 [142| 21|12 | 45

all7| 5| 3 | 6 [142| 21|12 | 45

al-17| -5| 3 | 6 |12 | 21|142|45

Example (concl)

all7| -5| 3 | 6 |12 | 21|142|45

all7| 5| 3 |6 |12 |21]|45 142

Sorting Analysis

eHow many steps are needed to sort n things?
eFor each swap, we have to search the
remaining array

elength is proportional to original array length n
eNeed about n search/swap passes
eTotal number of steps proportional to n?
eConclusion: selection sort is pretty expensive
(slow) for large n

Can We Do Better Than n2?

eSure we can!
eSelection, insertion, bubble sorts are all
proportional to n2
*Other sorts are proportional to n log n
eMergesort
eQuicksort
eetc.

*As the size of our problem grows, the time to
run a n? sort will grow much faster than a n log n
one.

“Mergesort”

s\We'll see how to write this later, but for now we’ll
see no C.
eBasic idea:
eStart with some small sorted pieces: “runs”
eMerge pairs of runs together to make larger sorted
runs
*When we finish merging the final pair, then we have
sorted our array.
eBasic operation is the merge.

Subproblem: Merge

X X
al 1| 6[12| p|3 |4 |13

X X

X X
al 1| 6[12| p|3 |4 |13

Subproblem: Merge

X X

al1|6[12| p|3 |4 |13

1|34 |6 |12 |13

l

*We only used n comparisons and n copies so
the amount of work we did was proportional to n.

oThis is not a sorting algorithm yet!
eHow did we get the small runs to begin with?

Turning Merge into a Sort

*We need to have runs to merge them. Where
do we find them?
eAnswer: Individual elements are just little runs.
eMergesort:
eMerge runs of length 1 into runs of length 2
eMerge the new runs of length 2 into runs of length 4
eMerge the new runs of length 4 into runs of length 8
eContinue until done

Example

a| 3|12|-5| 6 (142|21 |-17(45

Merge into runs of 2

a| 3|12(-5| 6 (21 [142|-17(45

Merge into runs of 4

al-5| 3| 6|12(-17(21 |45 [142

Example

Merge into run of 8

al-17]1-5| 3| 6 (12|21 |45 |142

*Of course, now we're done.
eEach merge step took time proportional to n.
eHow many merges steps did we use?
eIn this case 3.
eIn general we use log,n merge steps because we
double the size of our runs during each merge step.
eTotal time is nlog,n. (Or just nlog n)

3/3/00
L20

a.ol1e

\ \ \ \
Selection Sort —K—
v.01 =

a.0e8 - b

@0.ov6 - B

fel g WRWENEU bt

a.004 -

0.002 & ot
7~ 7

0 ‘ | | | |
a 2o 408 0L 80V 1000

ITtems

T T T T
Selection Sort —kK— L
1 I

DU

0 e
4] 200D 49P0 5PDE 3VUD 1EBAC
ITtems

Any better than n log n?

eIn general, no.

eIn special cases, we can do even better:
eExample: Sort exams by score: drop each exam in
one of 101 piles; work is proportional to n

. efficiency can be studied and

predicted mathematically, without using a

computer at all!

#This branch of mathematics is called complexity

theory and has many interesting, unsolved

problems.

Comments about Efficiency

oEfficiency means doing things in a way
that saves resources

eUsually measured by time or memory used
eMany small programming details have
little or no measurable effect on efficiency
eThe big differences comes with the right
choice of algorithm and/or data structure

