CSE 142
Programming I

## Sorting

## Sorting

-The problem: put things in order
-Usually smallest to largest: "ascending"
-Could also be largest to smallest: "descending"
-More formally:

- Given an array $a[0], a[1], \ldots a[n-1]$,
reorder entries so that
$a[0]<=a[1]<=\ldots<=a[n-1]$
-Shorthand for these slides: the notation array[i..k] means all of the elements array[i],array[i+1]...array[k]
-This is not C syntax!
-The array above would then be a[0..n-1] ${ }^{3 / 3 / 00}$


## Sorting Problem

- What we want: Data sorted in order

0 n
a sorted: $a[0]<=a[1]<=\ldots<=a[n-1]$

- Initial conditions

"Selection Sort"
- General situation

| $\mathbf{0}$ | k |
| :--- | :--- |
| smallest elements, sorted | remainder, unsorted |

- Step:
- Find smallest element $x$ in a[k..n-1]
- Swap smallest element with $a[k]$, then increase $k$

-Sorting has been intensively studied for decades
-Many different ways to do it! We'll look at two algorithms
-More in CSE143, CSE373, CSE326... ${ }^{331300}$ $\qquad$


## Subproblem: Find Smallest

/* Yield location of smallest element in a[k..n-1] */
/* Assumption: $\mathbf{k}$ < $\mathbf{n}$ */
/* Returns index of smallest, does not return the smallest value itself */
int min_loc (int a[ ], int $k$, int $n$ ) \{
int j, pos; /* a[pos] is smallest element */
/* found so far */
pos = k;
for $(j=k+1 ; j<n ; j=j+1)$ if ( $a[j]<a[p o s]$ )
pos = $j$;
return pos;
\}
3/3/00

## Code for Selection Sort

/* Sort a[0..n-1] in non-decreasing order (rearrange elements in a so that $\mathrm{a}[0]<=\mathrm{a}[1]<=\ldots<=\mathrm{a}[\mathrm{n}-1]$ ) */
int sel_sort (int a[ ], int n) \{

$$
\text { int } \bar{k}, m ;
$$

for $(k=0 ; k<n-1 ; k=k+1)\{$
$m=m i n \_l o c(a, k, n) ;$
swap(\&a[k], \&a[m]);
\}
\}

## Example (cont)

$a$| -17 | -5 | 3 | 6 | 142 | 21 | 12 | 45 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| -17 | -5 | 3 | 6 | 142 | 21 | 12 | 45 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


$a$| -17 | -5 | 3 | 6 | 12 | 21 | 142 | 45 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

3/3/00

## Sorting Analysis

-How many steps are needed to sort $n$ things? -For each swap, we have to search the remaining array
-length is proportional to original array length $n$

- Need about $n$ search/swap passes
- Total number of steps proportional to $n^{2}$
-Conclusion: selection sort is pretty expensive (slow) for large $n$

Example

a


## Example (concl)



## Can We Do Better Than $\boldsymbol{n}^{2 ?}$ ?

## - Sure we can!

- Selection, insertion, bubble sorts are all proportional to $n^{2}$
- Other sorts are proportional to $n \log n$
-Mergesort
-Quicksort
-etc.
-As the size of our problem grows, the time to run a $n^{2}$ sort will grow much faster than a $n \log n$ one.


## "Mergesort"

-We'll see how to write this later, but for now we'll see no C.
-Basic idea:
-Start with some small sorted pieces: "runs"

- Merge pairs of runs together to make larger sorted runs
-When we finish merging the final pair, then we have sorted our array.
-Basic operation is the merge.



## Turning Merge into a Sort

-We need to have runs to merge them. Where do we find them?
-Answer: Individual elements are just little runs.
-Mergesort:

- Merge runs of length 1 into runs of length 2
-Merge the new runs of length 2 into runs of length 4
- Merge the new runs of length 4 into runs of length 8
-Continue until done
-We only used $n$ comparisons and $n$ copies so the amount of work we did was proportional to $n$.
-This is not a sorting algorithm yet! -How did we get the small runs to begin with?




## Any better than $n \log n ?$

-In general, no.
-In special cases, we can do even better:
-Example: Sort exams by score: drop each exam in
one of 101 piles; work is proportional to $n$
-Curious fact: efficiency can be studied and predicted mathematically, without using a computer at all!
-This branch of mathematics is called complexity theory and has many interesting, unsolved problems.

## Example

## Merge into run of 8



- Of course, now we're done.
-Each merge step took time proportional to $n$.
-How many merges steps did we use?
oln this case 3.
-In general we use $\log _{2} n$ merge steps because we
double the size of our runs during each merge step.
-Total time is $n \log _{2} n$. (Or just $n \log n$ )



## Comments about Efficiency

-Efficiency means doing things in a way that saves resources

- Usually measured by time or memory used -Many small programming details have little or no measurable effect on efficiency -The big differences comes with the right choice of algorithm and/or data structure

