
K

K-12/16/00

CSE 142
Programming I

Arrays

© 2000 UW CSE

K-22/16/00

Chapter 8

8.1 Declaration and Referencing

8.2 Subscripts

8.3 Loop through arrays

8.4 & 8.5 Arrays arguments and parameters

8.6 Example

8.7 Multi-Dimensional Arrays

K-32/16/00

Motivation: Sorting

Input: 10 15 4 25 17 3 12 36 48 32 9 21

Desired output:
3 4 9 10 12 15 17 21 25 32 36 48

How can this be done?

If we had lots of variables we could store each
input in a variable.

But think about what the program would be like.

Is there a better way?

K-42/16/00

Another Motivation -
Averaging Grades
double grade1, grade2, grade3, grade4, grade5,

grade6, grade7, total ;

/* initialize grades somehow...*/

total = grade1 + grade2 + grade3 + grade4

 + grade5 + grade6 + grade7 ;

printf(“average = %f \n”, total / 7.0) ;

What if we had 500 grades to add up instead of 7?

K-52/16/00

Data Structures

• Functions give us a way to organize programs.
• Data structures are needed to organize data,

especially:
– large amounts of data
– variable amounts of data

– sets of data where the individual pieces are related to
one another

• In this course, we will structure data using
– arrays
– structs
– combinations of arrays and structs

K-62/16/00

Arrays
•Definition: A named, ordered collection of values of
identical type

•Name the collection (grade); number the elements (0
to 6)

•Example: grades for 7 students

C expressions:

grade[0] is 3.0

grade[6] is 3.2

2.0∗grade[3] is 4.0

...

 0

 6

.

.

.

3.0
3.8
1.7
2.0
2.5
2.1
3.2

double
grade[7];

1

K

K-72/16/00

Averaging Grades II
#define MAXGRADES 7
double grade[MAXGRADES], total ;
int index;

... /* initialize grades somehow... then:

total = grade[0] + grade[1] + grade[2] + grade[3]
 + grade[4] + grade[5] + grade[6];

 or here’s how we really would do it: */

total = 0;
for(index=0; index<MAXGRADES; index++) {
 total = total + grade[index];
}
printf(“average = %f \n”, total / MAXGRADES) ;

K-82/16/00

Array Terminology

type name[size];

double grade[7];

– grade is of type array of double with size 7.

– grade[0], grade[1], ... , grade[6] are the elements of the
array grade. Each is of type double.

– 0,1, ... , 6 are the indices of the array. Also called
subscripts.

– The bounds are the lowest and highest values of the
subscripts (here: 0 and 6).

array declaration

size must be an int constant

K-92/16/00

Array names are identifiers

• Therefore:
– They follow the all usual rules for C

identifiers (start with a letter, etc.)
– They must be declared before they are

used

• If you see x[y] in a program, then you
know that
– x should be the name of an array
– y should have an integer value

K-102/16/00

Index Rule
Rule: An array index must evaluate to an int
between 0 and n-1, where n is the number of
elements in the array. No exceptions!

Example:
 grade[i+3+k] /* OK as long as 0 ≤ i+3+k ≤ 6 */

The index may be very simple
grade[0]

or incredibly complex
grade[(int) (3.1 * fabs(sin (2.0*PI*sqrt(29.067))))]

K-112/16/00

C Array Bounds are Not Checked
#define CLASS_SIZE 7

double grade[CLASS_SIZE] ;
int index ;
index = 9 ;
...
grade[index] = 3.5 ; /* Is i out of range?? */

if (0 <= index && index < CLASS_SIZE) {
grade[index] = 3.5 ;

} else {
printf(“Array index %d out of range. \n”, index) ;

}
K-122/16/00

Element Rule
Rule: An array element can be used wherever
a simple variable of the same type can be
used. No exceptions!

•Examples:

 scanf (“%lf”, &grade[i]) ;

grade[i] = sin (2.0 * PI * sqrt(29.067))

K

K-132/16/00

Samples of Using Array Elements
double grade[7]; int i=3; /*declarations*/

printf(“Last two are %f, %f”, grade[5], grade[6]);

grade[5] = 0.0 ;

grade[i] = 2.0 ∗ grade[i+1] ;

scanf(“%lf”, &grade[0]);

swap(&grade[i], &grade[i+1]);

K-142/16/00

Things You Can and Can’t Do
• You can’t

use = to assign one entire array to another.

• You can’t
use == to directly compare entire arrays

• You can’t
directly scanf or printf entire arrays

But you can do these things on array elements!

And you can write functions to do them

K-152/16/00

Averaging Grades III
#define CLASS_SIZE 7

double grade[CLASS_SIZE];
double total;
int student ;

printf (“Enter %d grades \n”, CLASS_SIZE) ;
for (student = 0 ; student < CLASS_SIZE ; student ++)

scanf (“%lf”, &grade[student]) ;

total = 0.0;
for (student = 0; student < CLASS_SIZE ; student++) {

printf (“The %d-th grade is %f \n”, student, grade[student]) ;
total = total + grade[student] ;

}
printf (“average = %f \n”, total / (double) CLASS_SIZE) ;

K-162/16/00

Are Arrays Really Necessary?
/*Solve the grade average problem without arrays:*/
#define CLASS_SIZE 7

double next_grade, total ;
int i ;

/* read, print, and total grades */
printf (“Enter %d grades \n”, CLASS_SIZE) ;
total = 0.0 ;
for (i = 0 ; i < CLASS_SIZE ; i = i + 1) {

scanf (“%lf”, &next_grade) ;
printf (“The %d-th grade is %f \n”, i, next_grade) ;
total = total + next_grade ;

}
printf (“average = %f \n”, total / (double) CLASS_SIZE) ;

Do we ever really need to store all of the grades?

K-172/16/00

Average Grades IV
/* read grades, print ones above average only*/

double grade[CLASS_SIZE], average, total ;
int i ;
total = 0.0 ;
for (i = 0 ; i < CLASS_SIZE ; i = i + 1) {

scanf (“%lf”, &grade[i]) ;
total = total + grade[i] ;

}
average = total / (double) CLASS_SIZE ;
for (i = 0 ; i < CLASS_SIZE ; i = i + 1)

if (grade[i] > average)
 printf(“Grade %d is high:%f \n”, i, grade[i]);

K-182/16/00

“Parallel” Arrays
A set of arrays may be used in parallel when more than
one piece of information must be stored for each item.

Example: each student has a midterm grade, final exam
grade, and average score: 3 pieces of information for
each item (student).

#define MT_WEIGHT 0.30

#define FINAL_WEIGHT 0.70

#define MAX_STUDENTS 200

int num_student,

midterm[MAX_STUDENTS],

final[MAX_STUDENTS] ;

double score[MAX_STUDENTS] ;

K

K-192/16/00

Parallel Arrays
/* Suppose we have input the value of num_students,

read student i’s grades for midterm and final, and
stored them in midterm[i] and final[i]. Now:

Store a weighted average of exams in the array score.

*/

for (i = 0 ; i < num_student ; i = i + 1) {

score[i] = MT_WEIGHT * midterm[i] +

 FINAL_WEIGHT * final[i] ;

}

K-202/16/00

Reading Array Elements
/* Read in student midterm and final grades and

store them in two (parallel) arrays

 */

#define MAX_STUDENTS 200

int midterm [MAX_STUDENTS] ;

int final [MAX_STUDENTS] ;

int num_student ; /* actual number of students */

int i, done, s_midterm, s_final ;

K-212/16/00

Reading Arrays
printf(“Input number of students: ”) ;
scanf(“%d”, &num_student) ;

if (num_student > MAX_STUDENTS) {

printf(“Too many students”) ;

} else {

for (i = 0 ; i < num_student ; i = i+1) {

scanf(“%d %d”, &midterm[i], &final[i]) ;

}

}

K-222/16/00

Reading Arrays II

scanf(“%d %d”, &s_midterm, &s_final) ;

for {num_student = 0 ;
 s_midterm != -1 && num_student < MAX_STUDENTS;

num_student++) {
midterm[num_student] = s_midterm ;
final[num_student] = s_final ;
scanf(“%d %d”, &s_midterm, &s_final) ;

}

Terminate input
with “sentinel” -1, -1

K-232/16/00

Keeping Track of the Elements In-Use

• Since the array has to be declared a fixed size, you often declare
it bigger than you think you’ll really need

#define MAXSTUDENTS 750
int final[MAXSTUDENTS];

• How do you know which elements in the array actually hold
data, and which are unused extras?

1. Keep the valid entries together at the front
2. Use a special value to denote “empty”
3. Link the full entries together using parallel arrays

K-242/16/00

Keep the valid entries together

final
0

MAXSTUDENTS - 1

6
7

numStudents
7

for (student=0; student < numStudents; student++) {
…

}

!!!!!

K

K-252/16/00

Use a Special “Empty” Value

final
0

MAXSTUDENTS - 1

#define EMPTYFINAL -1
-1

-1
-1

-1
-1

-1

This value CANNOT be a legal
value (final exam score in this
case)

for (student=0; student < MAXSTUDENTS; student++) {
if (final[student]!=EMPTYFINAL) {

…
}

}

!!!!!

K-262/16/00

Shifting Array Elements
/* Shift x[0], x[1], ..., x[n-1] one position upwards

to make space for a new element at x[0].

Insert the value new at x[0].

Update the value of n.

*/

for (k = n ; k >= 1 ; k = k - 1)

x[k] = x[k-1] ;

x[0] = new ;

n = n+1 ;

K-272/16/00

Shifting Array Elements

n = 3; new = 6;4 7 5 ?

4 7 5 5

4 7 7 5

4 4 7 5

6 4 7 5

1

2

3

4

5

K-282/16/00

Review: initializing variables

• "Initialization" means giving
something a value for the first time.
– General rule: variables have to be

initialized before their value is used.

• Various ways of initializing
– initializer when declaring
– assignment statement
– scanf (or other function call using &)
– parameters are initialized with actual

values

K-292/16/00

Initialization Quiz

void init_example (int a) { /*line 1*/
int b, c, d=10, e[5]; /*line 2*/

b=5; /*line 3*/

d=6; /*line 4*/

scanf("%d %d", &b, &c); /*line 5*/

}
Q: Where is each of a, b, c, d, and e initialized?

K-302/16/00

Array Initializers
int w[4] = {1, 2, 30, -4};

/*w has size 4, all 4 are initialized */

char vowels[6] = {‘a’, ‘e’, ‘i’, ‘o’, ‘u’},
/*vowels has size 6, only 5 have initializers */
/* vowels[5] is uninitialized */

Cannot use this notation in assignment
statement:

w = {1, 2, 30, -4}; /*SYNTAX ERROR */

K

K-312/16/00

Incomplete Array Size

double x[] = {1.0, 3.0, -15.0, 7.0, 9.0};
/*x has size 5, all 5 are initialized */

But:
double x[]; /* ILLEGAL */

K-322/16/00

Review: Array Elements as Parameters

Just apply the element rule: An array element
can be used wherever a simple variable of the
same type can be used. Examples:

printf(“Last two are %f, %f”, grade[5], grade[6]) ;

draw_house(color[i], x[i], y[i], windows[i]) ;

scanf(“%lf”, &grade[0]) ;

swap(&grade[i], &grade[i+1]) ;

K-332/16/00

Whole Arrays as Parameters
#define ARRAY_SIZE 200
double average (int a[ARRAY_SIZE]) {

int i, total = 0 ;
for (i = 0 ; i < ARRAY_SIZE ; i = i + 1)

total = total + a[i] ;
return ((double) total / (double) ARRAY_SIZE) ;

}

int x[ARRAY_SIZE] ;
...
x_avg = average (x) ;

K-342/16/00

/* Sets vsum to sum of vectors a and b. */
void VectorSum(int a[3], int b[3], int vsum[3]) {

int i ;
for (i = 0 ; i < 3 ; i = i + 1)

vsum[i] = a[i] + b[i] ;
}

int main(void) {
 int x[3] = {1,2,3}, y[3] = {4,5,6}, z[3] ;

VectorSum(x , y , z);
printf(“%d %d %d”, z[0], z[1], z[2]) ;

}

Arrays as Output Parameters

note:
no *
no &

K-352/16/00

void VectorSum(int a[] , int b[] ,
 int vsum[] , int length) {

int i ;
for (i = 0 ; i < length ; i = i + 1)

vsum[i] = a[i] + b[i] ;
}

int x[3] = {1,2,3}, y[3] = {4,5,6}, z[3] ;

VectorSum(x , y , z , 3);

General Vector Sum

K-362/16/00

Array Parameter Summary
Array elements:

Just like simple variables of that type, both
input & output parameters

Whole arrays:

Arrays are not passed by value, i.e. not copied

Formal parameter: type array_name [SIZE]
Or : type array_name []

 no *

Actual parameter: array_name
 no [] , no &

K

K-372/16/00

An Array as a Pointer
int A[100]; A

A[i] equivalent to *(A + i)

pointer addition

memory

A[0] equivalent to *A

