
I

I-110/25/99

CSE 142
Programming I

Functions and
Design

© 2000 UW CSE

I-210/25/99

Drawing a House

I-310/25/99

Drawing a House

I-410/25/99

Drawing a (Similar) House

I-510/25/99

Draw House (Pseudo-code)

draw_house (color, ll_x, ll_y, num_windows)
draw body as a colored rectangle
draw roof as a colored triangle
if num_windows is one

draw door
draw window

if num_windows is two
draw door
draw window
draw window

I-610/25/99

Functional Decomposition

 Draw House

Draw Body Draw Roof Draw Door Draw Window

Rectangle Triangle

 Rectangle Circle Rectangle Line

This is a "calling tree" or "static call graph." Each
function is shown, with an arrow down to each
function called.

I

I-710/25/99

Functional Decomposition

 Draw House

Draw Roof Draw Body Draw Door Draw Window

Triangle Rectangle Circle Line

Each function shown only once (preferred)

I-810/25/99

Analysis to Design
to Programming

¶ Analyze the problem
¶ Then design a "big-picture" solution

¶ A functional decomposition shows how
the pieces fit together

¶ Then design individual functions
¶ May depend on low-level ("primitive")

functions available

¶ Final programming may be very
detailed

I-910/25/99

Top-Down vs. Bottom Up
•Sometimes designers start from the big picture

–Gradually work down to smaller pieces and then to fine
details

–Called the “top down approach”

•Sometimes people start with small pieces

–Figure out how they can fit together solve ever larger and
larger problems

–Called the “bottom up approach”

•Which one are we following with DrawHouse?

I-1010/25/99

Graphics Primitives
•Many systems offer a library of graphics
primitives

–Typical functions: clearscreen, draw circle,
rectangle, line, ellipse, etc.

–Typical parameters: location, color, fill, etc.

•Requires a coordinate system

(0, 0)

X

Y (a,b).

I-1110/25/99

Typical ’rectangle’ and ’line’

(x1, y1)

(x2, y2)

(x1, y1)

(x2, y2)

void

rectangle (int color, int x1, int y1, int x2, int y2);

void line (int x1, int y1, int x2, int y2);

I-1210/25/99

Big Picture Again

 Draw House

Draw Roof Draw Body Draw Door Draw Window

Triangle Rectangle Circle Line

Fill in the pieces one at a time

I

I-1310/25/99

WIN_W

WIN_H

MID_Y

Window Constants

MID_X

Our analysis of how to describe a window

I-1410/25/99

Map Analysis to C Code
•Identify and declare constants

•Choose parameters

•Utilize primitives

•Get the picky details right, too!

void draw_window(int x, int y)

 /* (x,y) is the lower left corner of the window */

{

rectangle(WHITE, x, y, x + WIN_W, y + WIN_H);

line(x+MID_X, y, x + MID_X, y + WIN_H);

line(x,y + MID_Y, x + WIN_W, y + MID_Y);

}

I-1510/25/99

Keep Filling in Pieces

 Draw House

Draw Roof Draw Body Draw Door Draw Window

Triangle Rectangle Circle Line

•Analyze and code remaining functions
•Does the order matter?

•Coding could be bottom-up, even if design was
top-down, and vice-versa
•If the design is good, the functions can be
implemented independently

I-1610/25/99

Draw House (gory details)

void draw_house (int color, int ll_x, int ll_y, int windows)
{

int roof_ll_x, roof_ll_y ;

/* Draw Body */
draw_body (color, ll_x, ll_y) ;

/* Draw Roof */
roof_ll_x = ll_x - OVERHANG ;
roof_ll_y = ll_y + BODY_HEIGHT ;
draw_roof (color, roof_ll_x , roof_ll_y) ;

/* Draw Door and Window(s) */
if (windows == 1)
{

draw_door (ll_x + DOOR_OFFSET_1, ll_y) ;
draw_window (ll_x + WINDOW_OFFSET_1,

 ll_y + WINDOW_RAISE) ;
}

else if (windows == 2)
{

draw_door (ll_x + DOOR_OFFSET_2, ll_y) ;
draw_window (ll_x + WINDOW_OFFSET_2A,

 ll_y + WINDOW_RAISE) ;
draw_window (ll_x + WINDOW_OFFSET_2B,

 ll_y + WINDOW_RAISE) ;
}

}

I-1710/25/99

Next Step: A Neighborhood

We could write 6 different functions...

Smarter: call 1 function 6 times...

I-1810/25/99

Summary of Functional
Decomposition

•Look for common elements (similarities)

•Parameterize for special features
(differences)

•Determine which functions will use
others

•Draw a graph to show their relationships

