
H

© 1996 UW CSE

H-1
2/2/00

CSE / ENGR 142
Programming I

Iteration

© 2000 UW CSE

H-2
2/2/00

Chapter 5
Read Sections 5.1-5.6, 5.10

5.1 Introduction & While Statement

5.2 While example

5.3 For Loop

5.4 Looping with a fixed bound

5.5 Loop design

5.6 Nested Loops

5.10 Debugging Loops

H-3
2/2/00

What’s “Wrong” with HW1?

• User has to rerun the program for every new
pair of years
– Wouldn’t it be nice if the program could process

repeated requests?

• Program ends immediately if user types a
bad input
– Wouldn’t it be nice the program politely asked

the user again (and again, etc. if necessary)?

H-4
2/2/00

One More Type of Control Flow
Sometimes we want to repeat a block of code. This is called
a loop.

H-5
2/2/00

Loops

• A “loop” is a repeated (“iterated”) sequence of
statements

• Like conditionals, loops (iteration) will give us
a huge increase in the power of our programs

• Alert: loops are harder to master than if
statements
– Even experienced programmers often make subtle

errors when writing loops

H-6
2/2/00

Motivating Loops

Problem: add 5 numbers entered at the keyboard.
Here’s a solution:

int sum;
int x1, x2, x3, x4, x5;

printf(“Enter 5 numbers: ”);
scanf(“%d%d%d%d%d”, &x1, &x2, &x3, &x4, &x5);
sum = x1 + x2 + x3 + x4 + x5;

This works perfectly!
But... what if we had 15 numbers? or 50? or 5000?

H

© 1996 UW CSE

H-7
2/2/00

Loop to Add 5 Numbers
int sum, x;

sum = 0;
printf(“Enter 5 numbers: “);

scanf(“%d”, &x);
sum = sum + x;
scanf(“%d”, &x);
sum = sum + x;
scanf(“%d”, &x);
sum = sum + x;
scanf(“%d”, &x);
sum = sum + x;
scanf(“%d”, &x);
sum = sum + x;

int sum, x;
int count;

sum = 0;
printf(“Enter 5 numbers: “);

count = 1;
while (count <= 5) {

scanf(“%d”, &x);
sum = sum + x;
count = count + 1;

}

H-8
2/2/00

More General Solution

int sum;
int x;
int count;
int number_inputs; /* Number of inputs */

sum = 0;
printf(“How many numbers? “);
scanf(“%d”, &number_inputs);
printf(“Enter %d numbers: “, number_inputs);
count = 1;
while (count <= number_inputs) {

scanf(“%d”, &x);
sum = sum + x;
count = count + 1;

}

H-9
2/2/00

while (condition) {
statement1;
statement2;
...

}

while loops

Loop body:
Any statement,
or a compound
statement

Loop condition

H-10
2/2/00

Compute 9!

What is 1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 ? ("nine factorial")
x = 1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 ;
printf (“%d”, x) ;

Bite size pieces: More Regular: As a loop:

x = 1; x = 1; i = 2; x = 1;

x = x * 2; x = x * i; i = i + 1; i = 2;

x = x * 3; x = x * i; i = i + 1; while (i <= 9) {

x = x * 4; x = x * i; i = i + 1; x = x * i;
... ... i = i + 1;

x = x * 9; x = x * i; i = i + 1; }

H-11
2/2/00

 i <= 9 ? x = x * i ;

i = i + 1 ;

yes

no

While Loop Control Flow

x = 1 ;
i = 2 ;

H-12
2/2/00

 /* What is 1 * 2 * 3 * ... * 9 ? */ # i product i≤9?
 A ? 1

product = 1 ; /* A */ B 2 1
i = 2 ; /* B */ C 2 1 T
while (i <= 9) { /* C */ D 2 2

product = product * i ; /* D */ E 3 2
i = i + 1 ; /* E */ C 3 2 T

} /* F */ D 3 6
printf (“%d”, product) ; /* G */ E 4 6

C 4 6 T
D 4 24
...

 E 10 362880
 C 10 362880 F
 G (print 362880)

Tracing the Loop

H

© 1996 UW CSE

H-13
2/2/00

Double Your Money

/* Suppose your $1,000 is earning interest at 5% per
year. How many years until you double your money?
*/

my_money = 1000.0;

n = 0;
while (my_money < 2000.0) {

my_money = my_money *1.05;
n = n + 1;

}
printf(“My money will double in %d years.”, n);

H-14
2/2/00

printf (“Enter numbers to average, end with -1.0 \n”) ;
sum = 0.0 ;
count = 0 ; sentinel
scanf (“%lf”, &next) ;
while (next != -1.0) {

sum = sum + next ;
count = count + 1;
scanf (“%lf”, &next) ;

}
if (count > 0)

printf(“The average is %f. \n”, sum / (double) count);

Average Inputs

H-15
2/2/00

Printing a 2-D Figure

How would you print the following diagram?

 ∗ ∗ ∗ ∗ ∗
 ∗ ∗ ∗ ∗ ∗
 ∗ ∗ ∗ ∗ ∗

repeat 3 times

print a row of 5 stars
repeat 5 times

print ∗

It seems as if a loop within a loop is needed.

H-16
2/2/00

#define ROWS 3

#define COLS 5
…

row = 1;

while (row <= ROWS) {

 /* print a row of 5 *’s */

 …

 row = row + 1

}

Nested Loop

outer
loop:
print 3
rows

H-17
2/2/00

row = 1; (#defines omitted to save space)

while (row <= ROWS) {

 /* print a row of 5 *’s */

 col = 1;

 while (col <= COLS) {

 printf(“*”);

 col = col + 1;

 }

 printf(“\n”);

 row = row + 1;

}

Nested Loop

inner
loop:
print
one
row

outer
loop:
print 3
rows

H-18
2/2/00

Trace

row:

col:

output:

H

© 1996 UW CSE

H-19
2/2/00

Print a Multiplication Table

 1 2 3

1 1 2 3

2 2 4 6

3 3 6 9

4 4 8 12

 1 2 3

1 1 * 1 1 * 2 1 * 3

2 2 * 1 2 * 2 2 * 3

3 3 * 1 3 * 2 3 * 3

4 4 * 1 4 * 2 4 * 3

H-20
2/2/00

 1 2 3

 2 4 6

 3 6 9

 4 8 12

 1 2 3

1

2

3

4

Print Row 2

col = 1;
while (col <= 3) {

printf(“%4d”, 2 * col);
col = col + 1;

}
printf(“\n”);

row number

H-21
2/2/00

row = 1;
while (row <= 4) {
 col = 1;

while (col <= 3) {
printf(“%4d”, row * col);
col = col + 1;

}
printf(“\n”);
row = row + 1;

}

Nested Loops

Print one row

Print 4 rows

H-22
2/2/00

row col
 1 1 print 1

 2 print 2
 3 print 3

 print \n
 2 1 print 2

 2 print 4
 3 print 6

 print \n
 3 1 print 3

 2 print 6
 3 print 9

 print \n
 4 1 print 4

 2 print 8
 3 print 12

 print \n

Loop Trace

H-23
2/2/00

row col statement

1 ? 1a
1 ? (TRUE) 1b
1 1 2a
1 1 (TRUE) 2b
1 1 print 1 3
1 2 2c
1 2 (TRUE) 2b
1 2 print 2 3
1 3 2c
1 3 (TRUE) 2b
1 3 print 3 3
1 4 2c
1 4 (FALSE) 2b
1 4 print \n 4
2 4 1c
2 4 (TRUE) 1b
2 1 2a

 • • •

Loop Trace (Detailed)

H-24
2/2/00

Notes About Loop Conditions
• They offer all the same possibilities as

conditions in if-statements
– Can use &&, ||, !

• Condition is reevaluated each time through
the loop

• A common loop pattern: counting the times
through the loop
– Occurs so often there is a separate statement type

based on that pattern: the for-statement

H

© 1996 UW CSE

H-25
2/2/00

for Loops
 /* What is 1 * 2 * 3 * ... * n ? */

product = 1 ;

i = 2 ; /* initialize */ product = 1 ;

while (i <= n) { /* test */ for (i = 2 ; i <= n ; i = i+1) {

product = product * i ; product = product * i ;

i = i+1; /* update */ }

} printf (“%d”, product) ;

printf (“%d”, product) ;

H-26
2/2/00

for Loops Syntax

“Update” is written at the
front of the loop, but
executed at the end

for (initialization;
 condition;
 update expression) {

statement1;
statement2;
...

}

H-27
2/2/00

for Loop Control Flow

 condition
yes

no

For Loop Body

Update Expression

Initialization

H-28
2/2/00

for Loops vs while Loops
• Any for loop can be written as a while loop

• These two loops mean exactly the same thing:
for (initialization; condition; update)

statement;

initialization;
while (condition) {

statement;
update

}

• So for provides no new capabilities, but the notation is
often convenient.

H-29
2/2/00

Counting in for Loops

/* Print n asterisks */

for (count = 1 ; count <= n ; count = count + 1) {

printf (“*”) ;

}

/* Different style of counting */

for (count = 0 ; count < n ; count = count + 1) {

printf (“*”);

}

/* could also use count <= n-1 */

H-30
2/2/00

void puzzler (int a, int b) {

if (a == b || a <= 0 || b <= 0) {
printf ("look");
return;

}
switch (a) {
case 1:

if (b <= a) {
printf ("both");
return;

}
printf ("ways");
break;

case 2:
if ((b < 3*a) && (b % 2 == 0)) {

printf ("before");
}
printf ("crossing");
break;

default:
if (b > a) printf (“the”);
else

printf ("street");
}

}

H

© 1996 UW CSE

H-31
2/2/00

Debug Practice
• You’re executing a program that calls

puzzler()

• “ways” is being displayed when the program
runs

• Question: what does this tell you about the
values of a and b?

• What if it was “before” that was being
displayed instead... what would that tell you
about the values of a and b?

H-32
2/2/00

#define ROWS 3

#define COLS 5

...
for (row = 1; row <= ROWS ; row = row + 1) {

 for (col = 1 ; col <= COLS ; col = col + 1) {

 printf(“∗”);

 }

 printf(“\n”);

}

“3 Rows of 5” as a Nested for Loop

inner
loop:
print
one
row

outer
loop:
print 3
rows

H-33
2/2/00

Trace

row:

col:

output:

H-34
2/2/00

Yet Another 2-D Figure

How would you print the following diagram?

 ∗
 ∗ ∗
 ∗ ∗ ∗
 ∗ ∗ ∗ ∗
 ∗ ∗ ∗ ∗ ∗
For every row (row = 1, 2, 3, 4, 5)

 Print rowrow stars

H-35
2/2/00

Solution: Another Nested Loop

#define ROWS 5
...
int row, col ;
for (row = 1 ; row <= ROWS ; row = row + 1) {

for (col = 1 ; col <= row ; col = col + 1) {
printf(“∗”) ;

}

printf(“\n”);

}

H-36
2/2/00

Trace

row:

col:

output:

H

© 1996 UW CSE

H-37
2/2/00

Yet One More 2-D Figure
How would you print the following diagram?

 ∗ ∗ ∗ ∗ ∗
 ∗ ∗ ∗ ∗
 ∗ ∗ ∗
 ∗ ∗
 ∗

For every row (row = 0, 1, 2, 3, 4)

 Print row spaces followed by (5 - row)row) stars

H-38
2/2/00

Yet Another Nested Loop

#define ROWS 5
...
int row, col ;
for (row = 0 ; row < ROWS ; row = row + 1) {

for (col = 1 ; col <= row ; col = col + 1)
printf(“ ”) ;

for (col = 1 ; col <= ROWS – row ; col = col + 1)
printf(“∗”) ;

printf(“\n”);

}

H-39
2/2/00

The Appeal of Functions
/* Print character ch n times */
void repeat_chars (int n, char ch) {

int i ;
for (i = 1 ; i <= n ; i = i + 1)

printf (“%c”, symbol) ;
}

...
for (row = 0 ; row < ROWS ; row = row + 1) {

repeat_chars (row, ‘ ’) ;
repeat_chars (ROWS - row, ‘∗’) ;
printf(“\n”);

}
H-40

2/2/00

Goals for Loop Development
•Getting from problem statement
to working code
•Systematic loop design and
development
•Recognizing and reusing code
patterns

H-41
2/2/00

Example: Rainfall Data

•General task: Read daily rainfall amounts and print
some interesting information about them.
•Input data: Zero or more numbers giving daily rainfall
followed by a negative number (sentinel).
•Example input data: 0.2 0.0 0.0 1.5 0.3 0.0 0.1 -1.0
•Empty input sequence: -1.0 [or -17.42 or …]

•Given this raw data, what sort of information might
we want to print?

H-42
2/2/00

Rainfall Analysis

Some possibilities:
•Just print the data for each day
•Compute and print the answer to one of these
questions

–How many days worth of data are there?

–How much rain fell on the day with the most rain?

–On how many days was there no rainfall?

–What was the average rainfall over the period?

–What was the median rainfall (half of the days have more,
half less)?

–On how many days was the rainfall above average?

What’s similar about these? Different?

H

© 1996 UW CSE

H-43
2/2/00

#include <stdio.h>
int main (void) {
 double rain; /* current rainfall from input */
 int scanStatus;
 /* read rainfall amounts and print until sentinel (<0) */
 scanStatus = scanf(“%lf”, &rain);
 while (rain >= 0.0 && scanStatus == 1) {
 printf(“%f ”, rain);
 scanStatus = scanf(“%lf”, &rain);
 }
 return 0;
}

Example: Print Rainfall Data

H-44
2/2/00

#include <stdio.h>
int main (void) {
 double rain; /* current rainfall from input */
 int ndays; /* number of days of input */
 /* read rainfall amounts and count number of days */
 ndays = 0;
 scanf(“%lf”, &rain);
 while (rain >= 0.0) {
 ndays = ndays + 1;
 scanf(“%lf”, &rain);
 }
 printf(“# of days input = %d.\n”, ndays);
 return 0;
}

Example: # Days in Input

H-45
2/2/00

#include <stdio.h>
int main (void) {
 double rain; /* current rainfall */

 /* read rainfall amounts */

 scanf(“%lf”, &rain);
 while (rain >= 0.0) {
 printf(“%f ”, rain);
 scanf(“%lf”, &rain);
 }

 return 0;
}

Is There a Pattern Here?
#include <stdio.h>
int main (void) {
 double rain; /* current rainfall */
 int ndays; /* # input numbers */
 /* read rainfall amounts */
 ndays = 0;
 scanf(“%lf”, &rain);
 while (rain >= 0.0) {
 ndays = ndays + 1;
 scanf(“%lf”, &rain);
 }
 printf(“# of days input = %d.\n”, ndays);
 return 0;
}

H-46
2/2/00

Program Schema
•A program schema is a pattern of code that solves a
general problem.
•Learn patterns through experience, observation.
•If you encounter a similar problem, reuse the pattern.
•Work the problem by hand to gain insight into
possible solutions. Ask yourself “what am I doing?”
•Check your code by hand-tracing on simple test data.

H-47
2/2/00

#include <stdio.h>
int main (void) {
 double variable; /* current input */
 declarations;
 initial;
 scanf(“%lf”, &variable);
 while (variable is not sentinel) {
 process;
 scanf(“%lf”, &variable);
 }
 final;
 return 0;
}

Schema: Read until Sentinel

H-48
2/2/00

Schema Placeholders
•In the schema, variable, declarations, sentinel, initial,
process, and final are placeholders.
•variable holds the current data from input. It should
be replaced with an appropriately named variable.
•sentinel is the value that signals end of input.
•declarations are any additional variables needed.
•initial is any statements needed to initialize variables
before any processing is done.
•process is the “processing step” - work done for
each input value.
•final is any necessary operations needed after all
input has been processed.

H

© 1996 UW CSE

H-49
2/2/00

#include <stdio.h>
int main (void) {
 double rain; /* current rainfall */
 declarations;
 initial;
 scanf(“%lf”, &rain);
 while (rain >= 0.0) {
 process;
 scanf(“%lf”, &rain);
 }
 final;
 return 0;
}

Schema instance for Rainfall

H-50
2/2/00

Loop Development Tips
Some useful ideas
•Do you know an appropriate schema? Use it!
•Declare variables as you discover you need them.

–When you create a variable, write a comment describing
what’s in it!

•Often helps to start with
–What has to be done to process one more input value?

–What information is needed for final?

•Often easiest to write initial last
– initial is “what’s needed so the loop works the 1st time”

– Often obvious after writing rest of the loop

H-51
2/2/00

 #include <stdio.h>
 int main (void) {

 double rain; /* current rainfall */
declarations:

 initial:

 scanf(“%lf”, &rain);
 while (rain >= 0.0) {
 process:

 scanf(“%lf”, &rain);
 }
 final:

 return 0;
 }

Print Rainfall Data

H-52
2/2/00

 #include <stdio.h>
 int main (void) {

 double rain; /* current rainfall */
declarations:

 initial:

 scanf(“%lf”, &rain);
 while (rain >= 0.0) {
 process:

 scanf(“%lf”, &rain);
 }
 final:

 return 0;
 }

Print # Days With No Rain

H-53
2/2/00

 #include <stdio.h>
 int main (void) {

 double rain; /* current rainfall */
declarations:

 initial:

 scanf(“%lf”, &rain);
 while (rain >= 0.0) {
 process:

 scanf(“%lf”, &rain);
 }
 final:

 return 0;
 }

Print Largest Daily Rainfall

H-54
2/2/00

 #include <stdio.h>
 int main (void) {

 double rain; /* current rainfall */
declarations:

 initial:

 scanf(“%lf”, &rain);
 while (rain >= 0.0) {
 process:

 scanf(“%lf”, &rain);
 }
 final:

 return 0;
 }

Print Average Daily Rainfall

H

© 1996 UW CSE

H-55
2/2/00

 #include <stdio.h>
 int main (void) {

 double rain; /* current rainfall */
declarations:

 initial:

 scanf(“%lf”, &rain);
 while (rain >= 0.0) {
 process:

 scanf(“%lf”, &rain);
 }
 final:

 return 0;
 }

Print Average Daily Rainfall (2)

H-56
2/2/00

while (sum < 10) ; for (i = 0; i <= 10; i = i + 1) ;
sum = sum + 2; sum = sum + i ;

for (i = 1; i != 10 ; i = i + 2)
sum = sum + i ;

double x ;
for (x = 0.0 ; x < 10.0 ; x = x + 0.2)

printf(“%.18f”, x) ;

Some Loop Pitfalls

H-57
2/2/00

Double Delight

 What you expect: What you might get:

0.000000000000000000 0.000000000000000000
0.200000000000000000 0.200000000000000000
0.400000000000000000 0.400000000000000000
... ...
9.000000000000000000 8.999999999999999997
9.200000000000000000 9.199999999999999996
9.400000000000000000 9.399999999999999996
9.600000000000000000 9.599999999999999996
9.800000000000000000 9.799999999999999996
 9.999999999999999996

H-58
2/2/00

Use ints as Loop Counters

int i ;

double x ;

for (i = 0 ; i < 50 ; i = i + 1)

{

x = (double) i / 5.0 ;

printf(“%.18f”, x) ;

}

H-59
2/2/00

Counting in Loops
To "increment:" increase (often by 1)
To "decrement:" decrease (often by 1)
Many loops increment or decrement a loop
counter:

for (i = 1 ; i <= limit ; i = i+1) { . . . }

times_to_go = limit;
while (times_to_go > 0) {

• • •
times_to_go = times_to_go - 1;

}

H-60
2/2/00

Handy Shorthand
Post-increment (x++), Post-decrement (x--)
Used by itself,

x++ means the same as x = x+1
x-- means the same as x = x-1

Very often used with loop counters:
for (i=1 ; i <= limit ; i++) { . . . }

times_to_go = limit;
while (times_to_go > 0) {

• • •
times_to_go-- ;

}

H

© 1996 UW CSE

H-61
2/2/00

Surgeon General’s Warning

• ++ and -- are unary operators.
• Pre-increment (++x) and pre-decrement

(--x) exist, too.
• For CSE142, use only in isolation. Don’t

combine these with other operators in
expressions!

E.g., don’t try x = y++ / (3 * --x--)

H-62
2/2/00

Iteration Summary

•General pattern:
•initialize
•test
•do stuff
•update
•go back to re-test, re-do stuff, re-update, ...

•“while” and "for" are equally general in C
•use “for” when initialize/test/update are closely
 related and simple, especially when counting

H-63
2/2/00

Event-Driven Programming
• Modern programs tend to be "event-

driven"
– Program starts, sets itself up.
– Program enters a loop, waiting for some

event or command to happen:
• mouse click, key click, timer, menu selection, etc.

– Program performs operation ("handles" the
event or command)

– Program goes back to its wait loop

• GP142 programs follow this model
H-64

2/2/00

Simple Command Interpreter
Read in "commands" and execute them.

Input - single characters

a -- execute command A by calling A_handler()

b -- execute command B by calling B_handler()

q -- quit

Pseudocode for main loop:

get next command

if a, execute command A

if b, execute command B

if q, signal quit

H-65
2/2/00

Command Interpreter
Loop Control Schema

repeat until quit signal

use variable “done” to indicate when done

set done to false

while not done

body statements

if quit command, set done to true

H-66
2/2/00

#define FALSE 0
#define TRUE 1

int main(void) {
char command;
int done;

done = FALSE;
while (! done){

 /* Input command from user */
command = ReadCommand();

switch (command){
case ‘A’:
case ‘a’:

A_handler(); /* Execute command A */
break;

case ‘B’:
case ‘b’:

B_handler(); /* Execute command B */
break;

case ‘Q’:
case ‘q’:

done = TRUE; /* quit */
break;

default:
printf(“Unrecognized command\n”);

}
}
return 0;

}

Command
Interpreter
main ()

