
G

G-11/13/00

CSE / ENGR 142
Programming I

Conditionals

© 2000 UW CSE

G-21/13/00

Chapter 4

Read Sections 4.1-4.5, 4.7-4.9

4.1: Control structure preview

4.2: Relational and logical operators

4.3: if statements

4.4: Compound statements

4.5: Example

4.7: Nested if statements

4.8: switch statements

G-31/13/00

Preview of Things to Come

• “Control flow” is the order in which statements are executed

• Until now, control flow has been sequential -- the next
statement executed is the next one that appears, in order, in
the C program

G-41/13/00

Preview Prologue
We’re going to look at two ways to indicate non-sequential
control flow

“conditionals,” which pick
one of two (or sometimes
more) next statements

“procedures” / “subroutines” /
“functions”, which allows you
to “visit” a chunk of code and
then come back

G-51/13/00

Conditional Execution

• A conditional statement allows the computer
to choose an execution path depending on the
value of a variable or expression

• if the withdrawal is more than the bank
balance, then print an error

• if today is my birthday, then add one to my
age

• if my grade is greater than 3.5, then attend
party

G-61/13/00

Conditional ("if ") Statement

if (condition) statement; The statement is executed if
and only if the condition is
true.

if (x < 100) x = x + 1;

if (withdrawalAmount > balance) printf(“NSF check.\n”);

if (temperature > 98.6) printf(“You have a fever.\n”);

G

G-71/13/00

Conditional Flow Chart
if (x < 100) x = x + 1 ;

y = y + 1;

X < 100 ? x = x + 1 ;

y = y + 1;

yes

no

G-81/13/00

• Also called "logical" or "Boolean" expressions
• Made up of variables, constants, arithmetic

expressions, and the "relational operators":

Math symbols: < , ≤ , > , ≥ , = , ≠
in C: < , <=, > , >= , == , !=

air_temperature > 0.0

98.6 <= body_temperature

marital_status == ‘M’

divisor != 0

Such expressions are used in “if” statements and
numerous other places in C.

Conditional Expressions

some conditional
expressions

G-91/13/00

Value of conditional expressions

• Remember that "expressions are things that have a
value."

• What is the value of a conditional expression??
• Answer: we think of it as TRUE or FALSE

– Most of the time, TRUE or FALSE is all you have to think about -
and how you should think about it.

• Under the hood in C, it’s really an integer
– FALSE is 0 (and 0 is FALSE)
– TRUE is any value other than 0 (and non-zero is TRUE)

• frequently 1
• 1 is result of relational operator (<, <=, >=, ==, !=) when relation

is true

G-101/13/00

Complex Conditionals

• if I have at least $15 or you have at least $15, then we can go
to the movies

• if the temperature is below 32 degrees and it’s raining, then
it’s snowing

• if it’s not the case that it’s Saturday or Sunday, then it’s a
work day

G-111/13/00

Complex Conditionals in C

Boolean operators && || !
 and or not

#define TRUE 1
#define FALSE 0

if (myMoney>=15.0 || yourMoney>=15.0) canGoToMovies = TRUE;

if (temperature<32.0 && raining==TRUE) snowing = TRUE;

weekday = TRUE;
if (!(today==6 || today==7)) weekday = FALSE;
if (weekday) mustWork = TRUE;

More about this topic later!
G-121/13/00

Multiple actions

More than one conditional action?

Use a compound statement:

if (temperature > 98.6) {

printf (“You have a fever. \n”);

aspirin = aspirin − 2 ;

}

G

G-131/13/00

Compound Statement
• Also called a "block."
• Groups together statements so that they are

treated as a single statement:
{

statement1 ;
statement2 ;
...

}
• Highly useful

– Not just in conditionals, but many places in C

G-141/13/00

Principles for combining and
substituting statements

1. You may use a compound statement anywhere
that a single statement may be used.

2. Anywhere that a statement is allowed in C, any
kind of statement can be used.

3. A compound statement man contain any
number of statements (including 0)

Among other things, these principles imply that
compound statements can be nested to any
depth.

G-151/13/00

Compound Example

Cash machine program fragment:

if (balance >= withdrawal) {

balance = balance - withdrawal ;

dispense_funds (withdrawal) ;

}

•Puzzlers:

•What if { } omitted?

•What if () omitted?
G-161/13/00

Finding Absolute Value
Problem: Compute the absolute value |x|
of x and put the answer in variable abs.
Here are three solutions, all correct:

if (x >= 0) abs = x;

if (x < 0) abs = -x;

abs = x;

if (x < 0) abs = -x;

if (x >= 0) abs = x;
else abs = -x;

G-171/13/00

Absolute Value as a Function
P.S.: A better approach is to define a
function to compute absolute value |x|:

int abs (int x)

{

if (x < 0)

x = − x ;

return (x) ;

}

G-181/13/00

An expanded type of conditional: if - else

Print error message:

if (balance >= withdrawal) {

balance = balance - withdrawal ;

dispense_funds (withdrawal) ;

}

else {

printf (“Insufficient Funds! \n ”) ;

}

no ; here

G

G-191/13/00

if - else Control Flow

balance >= withdraw ?

balance = balance - withdrawal ;

dispense_funds (withdrawal) ;
printf (“Insufficient Funds! \n ”) ;

yesno

/* arrive here whether condition
is TRUE or FALSE*/

G-201/13/00

Nested ifs
#define BILL_SIZE 20

if (balance >= withdrawal) {

balance = balance - withdrawal ;

dispense_funds (withdrawal) ;

} else {

if (balance >= BILL_SIZE) printf (“Try a smaller amount. \n ”) ;

else printf (“Go away! \n ”) ;

}

G-211/13/00

if (x == 5) {
if (y == 5) printf (“Both are 5. \n ”) ;
else printf (“x is 5, but y is not. \n ”) ;

} else {
if (y == 5) printf (“y is 5, but x is not. \n ”) ;
else printf (“Neither is 5. \n ”) ;

}

 Nested ifs , Part II

G-221/13/00

< 15,000

 15,000, < 30,000

 30,000, < 50,000

 50,000, < 100,000

 100,000

0%

18%

22%

28%

31%

income tax

Tax Example (Study at Home)
Print the % tax based on income:

G-231/13/00

Simple Solution
if (income < 15000) {
 printf(“No tax.”);
}
if (income >= 15000 && income < 30000) {
 printf(“18%% tax.”);
}
if (income >= 30000 && income < 50000) {
 printf(“22%% tax.”);
}
if (income >= 50000 && income < 100000) {
 printf(“28%% tax.”);
}
if (income >=100000) {
 printf(“31%% tax.”);
}

Mutually exclusive conditions - only one will be true

G-241/13/00

if (income < 15000) { if (income < 15000) {
printf(“No tax”); printf(“No tax”);

} else { } else if (income < 30000) {
if (income < 30000) { printf(“18%% tax.”);

printf(“18%% tax.”); } else if (income < 50000) {
} else { printf(“ 22%% tax.”);

if (income < 50000) { } else if (income < 100000) {
printf(“ 22%% tax.”); printf(“28%% tax.”);

} else { } else
if (income < 100000) { printf(“31%% tax.”);

printf(“28%% tax.”); }
} else {

printf(“31%% tax.”);
}

}
}

}

Order is important. Conditions are evaluated in order given.

Cascaded ifs

G

G-251/13/00

Problem: The First Character

/* Problem: read 3 characters; print the smallest */ c1 c2 c3 first
char c1, c2, c3, first; ? ? ? ?

printf (“Enter 3 chars> “) ;
scanf (“%c%c%c”, &c1, &c2, &c3) ; 'h' 'a' 't' ?
first = c1 ; 'h' 'a' 't' 'h'

if (c2 < first) (true)
first = c2 ; 'h' 'a' 't' 'a'

if (c3 < first) (false)

first = c3 ; ---
printf (“Alphabetically, the first of the 3 is %c”,

 first) ; (prints 'a')

G-261/13/00

Function first_character

char first_character(char c1, char c2, char c3)
{
 char first ;
 first = c1 ;
 if (c2 < first)
 first = c2 ;
 if (c3 < first)
 first = c3 ;
 return(first);
}

G-271/13/00

Problem: Sort 2 Characters

Top Level View:

Input two characters

Rearrange them in sorted order

Output them in sorted order

Examples:

Input: ra Output:ar

Input: nt Output:nt
G-281/13/00

Sort 2 Characters:
Algorithm Refinement
Input c1, c2
If c2 comes before c1 in alphabet
 Swap c1 and c2
Output c1, c2

Input c1, c2
If c2 comes before c1 in alphabet
 Save c1 in temporary
 Assign c2 to c1
 Assign temporary to c2
Output c1, c2

Swap

c1 c2

c1 c2

temp

Why not
c1 = c2;
c2 = c1;

?

G-291/13/00

Sort 2 Characters
Code

/* sort 2 characters and print in sorted order */ c1 c2 temp
char c1, c2, temp ; ? ? ?
printf (“Enter 2 chars: ”) ;
scanf (“%c%c”, &c1, &c2) ; 'd’ ’a’ ?
if (c2 < c1) { /* swap if out of order */ (true)

temp = c1 ; 'd’ ’a’ ’d’

c1 = c2 ; 'a’ ’a’ ’d’

c2 = temp ; 'a’ ’d’ ’d’
}
printf (“In alphabetical order, they are %c%c”, (prints “ad”)
 c1, c2) ;

G-301/13/00

Complex Conditions

• AND (&&), OR (||), NOT (!) can be used to make more
complicated conditions

• Review: like arithmetic expressions, conditional
expressions have a value:

• TRUE (non-zero) or FALSE (zero)

• When using relational (<, ==, etc.) and Boolean (&&, ||, !)
operators: TRUE is 1; FALSE is 0

• values are actually int (C has no Boolean type). Can be
used in int expressions:

• m = (z >= 0.0) ; /* means “m is 1 if z is positive”
*/

G

G-311/13/00

if (age < 25) {
 if (sex == ‘M’) {
 insurance_rate = insurance_rate * 2 ;

}
}

if ((age < 25) && (sex == ‘M’)) {
insurance_rate = insurance_rate * 2 ;

}

Nested if vs. AND (&&)

G-321/13/00

if ((dwi > 0) || (tickets > 3)) {
insurance_rate = insurance_rate * 2 ;

}

/*An int variable can hold a conditional value: */
/* We call such a variable a flag. */

int high_risk ;
...
high_risk = (age < 25 && sex == ‘M’) ;
if (high_risk) insurance_rate = insurance_rate * 2 ;

And (&&), Or (||)

G-331/13/00

Truth Tables for &&, ||

A "truth table" lists all possible combinations
of values, and the result of each combination

P Q P && Q P || Q
T T T T
T F F T
F T F T
F F F F

P and Q stand for any conditional expression
G-341/13/00

int high_risk ;

...

high_risk = (age < 25 && sex == ‘M’) ;

if (high_risk) {
} else {

printf (“Cheap rates. \n”) ;
}

if (! high_risk) {

printf (“Cheap rates. \n”) ;

}

Truth Table for Not (!)

P !P

T F

F T

G-351/13/00

DeMorgan’s Laws
if (! (age < 25 && sex == ‘M’)) printf (“Cheap rates. \n”) ;

is equivalent to

if (age >= 25 || sex != ‘M’)) printf (“Cheap rates. \n”) ;

More generally, DeMorgan’s laws help determine when
two complex conditions are equivalent:

! (P && Q) is equivalent to (!P || !Q)

! (P || Q) is equivalent to (!P && !Q)

G-361/13/00

P Q (P&&Q) !(P&&Q) !P !Q (! P || !Q)
T T
T F
F T
F F

Proof of DeMorgan

Is it really true that !(P&&Q) == (!P || !Q) ?

G

G-371/13/00

Precedence of &&, ||, !, >, etc.

High (Evaluate First) Low (Evaluate Last)

! Unary - * / % - + < > <= >= == != && ||

a = 2;
b = 4;
z = (a + 3 >= 5 && !(b < 5)) || a * b + b != 7 ;

G-381/13/00

if (x = 10) { /* should be ==, but it’s not a syntax error! */

printf(“x is 10 ”) ;

}

Pitfalls of if, Part I

The World’s Last C Bug
status = check_radar () ;

if (status = 1) {

launch_missiles () ;

}

G-391/13/00

Pitfalls of if, Part II

No: if (0 <= x <= 10) {
 printf (“x is between 0 and 10. \n ”) ;
}

Yes: if (0 <= x && x <= 10) {
 printf (“x is between 0 and 10. \n ”) ;
}

G-401/13/00

Pitfalls of if, Part III

& is different from &&
| is different from ||

–& and | are not used in CSE142

–If used by mistake, no syntax error, but program may

operate incorrectly

G-411/13/00

Pitfalls of if, Part IV

Beware == and != with doubles:

double x ;

x = 30.0 * (1.0 / 3.0) ;

if (x == 10.0) …

G-421/13/00

Another Control Flow Statement

We’re about to switch gears to talk about another kind of
control flow statement, the switch statement

G

G-431/13/00

Longwinded if
/* How many days in a month? */

if (month == 1) { /* Jan */
days = 31 ;

} else if (month == 2) { /* Feb */
days = 28 ;

} else if (month == 3) { /* Mar */
days = 31 ;

} else if (month == 4) /* Apr */
days = 30 ;

... /* need 12 of these */

G-441/13/00

Clearer Style

if (month == 9 || month == 4 || /* Sep, Apr */
 month == 6 || month == 11) { /* Jun, Nov */

days = 30 ;

} else if (month == 2) { /* Feb */

days = 28 ;

} else {

days = 31; /* All the rest */

}

G-451/13/00

Clearest: switch
/* How many days in a month? */

switch (month) {
case 2: /* February */

days = 28 ;
break ;

case 9: /* September */
case 4: /* April */
case 6: /* June */
case 11: /* November */

days = 30 ;
break ;

default: /* All the rest have 31 ... */
days = 31 ;

}
printf (“There are %d days in that month. \n ”, days) ;

G-461/13/00

switch: Flow of Control

month = 6 ;
switch (month) {
case 2: /* February */

days = 28 ;
break ;

case 9: /* September */
case 4: /* April */
case 6: /* June */
case 11: /* November */

days = 30 ;
break ;

default: /* All the rest have 31 ... */
days = 31 ;

}
printf (“There are %d days in that month. \n ”, days) ;

G-471/13/00

switch
switch (control expression)
{
case-list1
 statements1
 break;
case-list2
 statements2
 break;
.
.
default:
 statements
}

a "case-list" is a
series of one or
more "case"s

case constant1:
case constant2:
.
.
case constantN:

G-481/13/00

The One Big Pitfall of switch

month = 6 ;
switch (month) {
case 2: /* February */

days = 28 ; /* break missing */
case 9: /* September */
case 4: /* April */
case 6: /* June */
case 11: /* November */

days = 30 ; /* break missing */
default: /* All the rest have 31 ... */

days = 31 ;
}
printf (“There are %d days in that month. \n ”, days) ;

G

G-491/13/00

char marital_status ;
...
switch (marital_status) {
case ‘m’:
case ‘M’:

printf (“Married \n”) ;
break ; int or char expression

case ‘s’:
case ‘S’:

printf (“Single \n”) ;
break ;

default:
printf (“Sorry, I don’t recognize that code. \n”) ;

}

switch on char is Legal!

G-501/13/00

Conditionals:
Summary

•if (logical expression) {
 the “then” statements
}
•if (logical expression) {
 the “then” statements
} else {
 the “else” statements
}
•comparisons < <= > >= == !=
•combining && || !

•DeMorgan’s Laws

•switch: several cases based on single int or char value

no “;”

Parens

