
D

D-1
1/10/00

CSE / ENGR 142
Programming I

Display
Input and Output

(I/O)
© 2000 UW CSE

D-2
1/10/00

Writing Useful Programs

• It’s hard to write useful programs using only
variables and assignment statements

• Even our Fahrenheit to Celsius program
needed more:
– Needed a way to get data into and out of the

program

• We’ll learn more about doing this today
– Lots of terminology and messy details, but

worthwhile.

D-3
1/10/00

What’s a Computer?

Central
Processing

Unit

Main
Memory

Monitor

Network

Disk (Files)

Keyboard
mouse

D-4
1/10/00

Basic definitions

• Input: movement of data into memory from
outside world (e.g., from keyboard).

• Changes the value of a variable
• “read” operation

•Output: movement of data from memory to
outside world (e.g., to monitor)

• “write” operation
• Does not change value of memory

D-5
1/10/00

ASCII Output

D-6
1/10/00

Examples of I/O Statements

printf("Enter a Fahrenheit temperature: ");

scanf("%lf", &fahrenheit);

celsius = (fahrenheit - 32.0) * 5.0 / 9.0;

printf("That equals %f degrees Celsius.",
celsius);

D

D-7
1/10/00

Display Input and Output

The functions printf and scanf provide basic
display I/O services.

printf(“control string”, list of expressions) ;

scanf(“control string”, list of &variables) ;

Control string gives the format of output or input.

Expressions are what to output.

Variables are where to store the input.

‘&’ is magic (that is REQUIRED for scanf!)

D-8
1/10/00

printf(): display output
int numPushups;

numPushups = 5 ;
printf(“Hello. Do %d pushups.\n”, numPushups);

output: Hello. Do 5 pushups.

%d is a placeholder (“conversion character”) for an
int value.

\n is an escape sequence for “newline” character.

D-9
1/10/00

What Does the ‘\n’ Do?

int numPushups;

numPushups= 5 ;
printf(“Hello.”);
printf(“ Do %d pushups.\n”, number);
printf(“Do them now.\n”);

output: Hello. Do 5 pushups.
Do them now.

D-10
1/10/00

Multiple Output Expressions
Basic rule:

% placeholders in format string match expressions in
output list in number, order, and type.

int multiplier;
double pi;

pi = 3.14;
multiplier = 2;

printf(“%d times %f is %f. \n”,
multiplier , pi , (double) multiplier * pi);

Output: 2 times 3.14000 is 6.28000.

D-11
1/10/00

Formatting Output
• A few of many things you can do:

– Control number of decimals
• 3.1 vs 3.100000

– Exponential (scientific) or decimal
notation
• 3.1 vs 3.1E0

– Control total width (including spaces)
• _______3.1 vs __3.1

How? Look in textbook or a reference
manual, or online help!

D-12
1/10/00

 Output Format Examples
%10.2f _ _ _ _ 1 2 3 . 5 5 double
%10.4f _ _ 1 2 3 . 5 5 0 0
%.2f 1 2 3 . 5 5
%10d _ _ _ _ _ _ _ 4 7 5 int
%-10d 4 7 5 _ _ _ _ _ _ _
%10c _ _ _ _ _ _ _ _ _ a char

D

D-13
1/10/00

scanf(): read input
scanf (“control string”, &input list) ;

 int numPushups ;

 printf (“Hello. Do how many pushups? ”) ;
 scanf (“ %d ” , &numPushups) ;
 printf (“Do %d pushups.\n”, numPushups) ;

 output: Hello. Do how many pushups? 5

Do 5 pushups.

input list variables MUST be preceded by an &.
input list variables MUST be preceded by an &.

D-14
1/10/00

If You Forget the ‘&’

The program will compile, but when you execute...

D-15
1/10/00

Whitespace
• space (‘ ’), tab (‘\t’), newline (‘\n’) are

“whitespace”

• Skipped by scanf for int (“%d”), and
double (“%lf”)

• user can type spaces before a number
and they are ignored

• Not skipped for char input “%c”
• each character typed, including spaces,

is used

D-16
1/10/00

Multiple Inputs

•Basic rule:

– % placeholders in the format must match
variables in the input list

– MUST! match one-for-one in number,
order, and type.

Int studentID ;
double grade ;

scanf (“%d %lf”, &studentID , &grade) ;

D-17
1/10/00

Format Items Summary

Type scanf() printf()

char %c %c
int %d %d %i also works

double %lf %f (long) float

What happens if types don’t match?

printf -- garbled output

scanf -- unpredictable errors
 and don’t forget the & !

D-18
1/10/00

I/O Programming Considerations

Suppose your program has

scanf("%lf", &fahrenheit);

and the user types “comfortable” as the input?

--> Nothing is read (so fahrenheit is unitialized)

--> Ka-boom

This is YOUR problem (not the user’s)

D

D-19
1/10/00

Here’s What Happens

D-20
1/10/00

What You Can Do

scanf() “ returns” the number of items read successfully

int scanfCount;

scanfCount = scanf(“%d”, studentID);

/* if scanfCount is not equal to 1 at this point,

 the user has made some kind of mistake.

 Handle it. */

D-21
1/10/00

D-22
1/10/00

Option 1: Use the Debugger to Set a Breakpoint

D-23
1/10/00

Execution Pauses at the Breakpoint

D-24
1/10/00

Option 2: Use assert()

Required

D

D-25
1/10/00

What Happens

D-26
1/10/00

More Terminology:
Syntax vs Semantics/Logic

• Syntax: the required form of the program
– punctuation, keywords, word order, etc.
– The C compiler always catches these “syntax

errors” or “compiler errors”

• Semantics and logic: what the program
means
– what you want it to do
– The C compiler cannot catch these kinds of errors!
– They can be extremely difficult to find
– Logic errors may not show up right away

D-27
1/10/00

Syntax or logic errors?

#include <stdio.h>
int main (void) {
double far, cel;

far = 56.0;
cel = (far-32.0)*5.0/9.0

printf (’Celsius is %f ’, cell);

retrun (0);
}

#include <stdio.h>
int main (void) {
double far, cel;

far = 56.0;
cel = far-32.0*5.0/9.0;

printf ("Celcius is %d", far);

return (0);
}

D-28
1/10/00

Syntax or logic errors?

#include <stdio.h>
int main (void) {
double far, cel;

far = 56.0;
cel = (far-32.0)*5.0/9.0;

printf (’Celsius is %f ’, cell);

retrun (0);
}

#include <stdio.h>
int main (void) {
double far, cel;

far = 56.0;
cel = far-32.0*5.0/9.0;

printf ("Celcius is %d", far);

return (0);
}

D-29
1/10/00

I/O Summary
•Output: printf(“control string”, output list);

•output list – expressions; values to be printed

•control string – types and desired format

•for now, NO “&”, ever!

•Input: scanf(“control string”, &input list);

•input list – variables; values to be read

•control string – types and expected format

•can be a way of initializing variables

•for now, YES “&”, always!

•Check that you actually read some input!

•Both: %x’s, I/O list match in number, order, type
D-30

1/10/00

More on Initializing variables

• Review: Initialization means giving
something a value for the first time.

• Potential ways to initialize:
– Assignment statement
– scanf
– Yet another way: initializer with declaration

D

D-31
1/10/00

Initializing when Declaring

Initializers are part of the declaration;
they are not assignment statements (despite the
= sign).

int product, i;
 /*declarations without
initializers */

product = 40;
i = 5;
 /*initialization via
assignment statements
*/

int product = 40, i =5;
 /*declaration with
initializers, */

i = 6;
/*not an

 inititialization! */

D-32
1/10/00

Initialization Quiz

int main (void){ /*line 1*/
int a, b, c, d=10; /*line 2*/
b=5; /*line 3*/
d=6; /*line 4*/
scanf("%d %d", &b, &c); /*line 5*/
}
Q: Where is each of a, b, c, and d

initialized?

D-33
1/10/00

Compilers, Linkers, etc.

library
(ANSI)

header
(stdio.h)

executable

program

debugger

c

o

m

p

i

l

e

r

l

i

n

k

e

r

source
code

object
code

010
110

.c file

