CSE / ENGR 142 Programming I

Arithmetic Expressions

\qquad

Why Study Expressions?

1. We need precise rules that define exactly what an expression means:

What is the value of $4-4 * 4+4$?
2. Arithmetic on a computer isn't always precise:
$(1.0 / 9.0) * 9.0$ could be 0.99999998213
3. Division of "int" type variables can give REALLY different results from what you probably expect:
$2 / 3$ is zero in C

Assignment Statement

 Reviewdouble area, radius;

Expressions

-Expressions are things that have values
-A variable by itself is an expression: radius
-A constant by itself is an expression: 3.14
-Often expressions are combinations of variables, constants, and operators.
area $=3.14$ * radius * radius;
-The overall value of the expression is based on the data and operators specified.
-Data means the integer or floating-point constants and/or variables in the expression.
\bullet Operators are things like addition, multiplication, etc.

The Big Picture

- In an assignment statement,
- the expression (right hand side) is first evaluated,
- then its value is assigned to (stored in) the assignment variable (left hand side).
- How this happens depends on the data types in the expression, the operators, and the type of the assignment variable.
my_int $=$ int $1+$ int 2 ;

Unary and Binary

- Binary: operates on two things 3.0^{*} b
zebra + giraffe
- Unary: operates on one thing
-23.4
- C operators are unary or binary
- Then what about expressions like $a+b+c$?
- Answer: this is two binary ops, in sequence

Expressions with doubles

REVIEW:
Doubles are floating-point values that represent real numbers within the computer.
Constants of type double:

$$
0.0,3.14,-2.1,5.0,6.02 \mathrm{e} 23,1.0 \mathrm{e}-3
$$

not 0 or 17
Operators on doubles:
unary: -
binary: +, -, *, /

Expressions with ints

REVIEW:

An integer represents a whole number with no fractional part.
Constants of type int:

$$
0,1,-17,42
$$

Operators on ints:
unary: -
binary: +, -, *, /, \%

Expressions with ints:

Time Example

Solution:
hours = total_minutes / 60;
minutes $=$ total_minutes $\% 60$;

Expressions with doubles: Examples

double height, base, radius, $x, c 1, c 2$;
Sample expressions (not statements):
0.5 * height * base
($4.0 / 3.0$) * 3.14 * radius * radius * radius
$-3.0+c 1^{*} x-c 2^{*} X^{*} x$

int division and remainder

Integer operators include integer division and integer remainder.
Caution: looks like an old topic, but it's new!
/ is integer division: no remainder, no rounding $299 / 100 \longrightarrow 2,6 / 4 \longrightarrow 1,5 / 6 \longrightarrow 0$
\% is mod or remainder:

$$
299 \% 100 \longrightarrow 99,6 \% 4 \longrightarrow 2,5 \% 6 \longrightarrow 5
$$

A Cautionary Example

int radius;

double area;
-
-
area $=(22 / 7)$ * radius * radius;

Why Use ints? Why Not doubles Always?

-Sometimes only ints make sense -"give me the $15^{\text {th }}$ spreadsheet cell"
-"give me the (14.9999998387) ${ }^{\text {th }}$ cell" ??
-Doubles may be inaccurate representing "ints"
-In mathematics $3 \cdot 15 \cdot(1 / 3)=15$
-In computer arithmetic
3.0 * 15.0 * ($1.0 / 3.0$) might be 14.999999997
\bullet Last, and least

- arithmetic with doubles is slower on some computers
-doubles often require more memory 1/7/00

Operator Precedence

Precedence determines the order of evaluation of operators.
Is $a+b^{*} a-b$ equal to $(a+b)^{*}(a-b)$ or
And does it matter?
Try this:

$$
\begin{aligned}
& 4+3^{*} 2-1 \\
& (4+3)^{*}(2-1)= \\
& 4+\left(3^{*} 2\right)-1=
\end{aligned}
$$

Operator Precedence

Precedence rules:

1. do ()'s first, starting with innermost
2. then do unary minus (negation): -
3. then do "multiplicative" ops: *, /, \%
4. lastly do "additive" ops: binary +, -

1/7/00 \quad C-15

The Full Story...

- C has about 50 operators \& 18

Precedence and Associativity: Example precedence levels...

- A "Precedence Table" shows all the operators, their precedence and associativity.
- Look on inside front cover of our textbook
- Look in any C reference manual
- When in doubt: check the table
- When faced with an unknown operator: check the table

Mathematical formula:

$$
\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}
$$

C formula
(-b+sqrt (b*b-4.0*a*c))/(2.0*a)

Mixed Type Expressions

What is 2 * 3.14 ?
Compiler will implicitly (automatically) convert int to double when they occur together:
int + double \longrightarrow double + double (likewise -, *, /)
$2^{*}{ }^{*} 3.14 \longrightarrow\left(2^{*} 3\right) * 3.14 \rightarrow 6{ }^{*} 3.14 \rightarrow \underline{6.0}{ }^{*} 3.14 \rightarrow 18.84$
$2 / 3 * 3.14 \rightarrow(2 / 3) * 3.14 \rightarrow 0 * 3.14 \rightarrow 0.0 * 3.14 \rightarrow 0.0$

We strongly recommend you avoid mixed types: e.g., use 2.0 / 3.0 * 3.14 instead.

Conversions in Assignments

```
        int total, count ;
        double avg;
        total=97; count=10;
impiciction
to double avg=total / count ; /*avg is 9.0*/
    total = avg; /*BAD*/
```


Explicit Conversions

(Section 7.1)
-To be explicit in the program, you can use a cast - convert the result of an expression to a different type.
-Format: (type) expression
-Examples:
(double) myage
(int) (balance + deposit)
-This does not change the rules for evaluating the expression (types, etc.)

C is "Strongly Typed"

-Every variable, value, and expression has a type
-C cares a lot about what the type of each thing is
-Lots of cases where types have to match up -Start now: be constantly aware of the type of everything in your programs!

Basic Lessons

-Write in the clearest way possible for the reader.
-Keep it simple; for very complex expressions, break them up into multiple statements.
-Use parentheses to indicate your desired precedence for operators where it may be ambiguous.
-Use explicit casts to avoid implicit conversions in mixed mode expressions and assignments.
-Be aware of types.

