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CSE 142
Programming I

Recursion
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Remember Static Call Graphs

main()

washerArea()

diskArea()

printf() scanf()
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What is Recursion

lA program contains recursion if there is a 
cycle in the static call graph
➤We call the functions involved recursive

factorial()
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Huh?!

lYou probably have a few questions:

➤How can this work?

➤Why would I want to do this?

➤Isn’t there another way?
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Factorial Function

lHow do we think of a factorial?

➤“N factorial is 1*2*3*…  all the way up to N”

➤“N factorial is N times N-1 factorial”
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Iterative Factorial

int factorial(int n){

int product, i;

product = 1;

for (i=1; i<=n; i++)

product = product * i;

return product;

}
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Recursive Factorial

int factorial(int n){

int product;

if (n <= 1) product = 1;

else product = n * factorial(n-1);

return product;

}
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Yikes!

lTracing the recursion is easy as long as 
we keep in mind our function basics:

➤Parameters are local to a function—created 
when the function starts, and destroyed when 
the function ends

➤Parameters are initialized by copying the 
arguments into the parameters 
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Important Point!

lEVERY recursion must have a base case
and an iterative case

➤The iterative case is what makes our program 
loop—without it it would not be a recursion

➤The base case is what stops our program 
from looping—without it, we will loop forever!
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Another Example

lFibonacci numbers
lRecall: each Fibonacci number is the sum 

of the previous two

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, etc. 

lProblem: Find the nth Fibonacci number
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We Can Do This Iteratively
int fibonacci(int n){

int prev, cur, next;

prev = 1; cur = 1;

for (n = n-1; n > 0; n--){

next = prev + cur;

prev = cur;

cur = next;

}

return cur;

}
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We Can Do This Recursively

int fibonacci(int n){

int result;

if (n <= 1) result = 1;

else result = fibonacci(n-1) +

fibonacci(n-2);

return result;

}



3

9. August, 2000 CSE 142 Summer 2000 — Isaac Kunen R-13

Let’s Examine Our Choices

lWhich solution is easier to understand?

lWhich solution makes more work for the 
computer?

lWhich method makes sense for each of 
our two problems?
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Warning!

The Surgeon General has determined 
that

computing the Fibonacci sequence 
recursively is hazardous to your 

computer’s 
performance. 
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What Can We Do Recursively?

l It turns out that anything we can do 
iteratively we can do recursively.

lLikewise, anything we can do recursively, 
we can do iteratively.

lSo, why do we care?
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Why Would We Use Recursion?

lSome problems are much easier to 
formulate as a recursion, so it makes our 
life easier (we’ll see examples)

lSome programming languages don’t have 
loops!
➤Some don’t even have variables!    (!!!!) 
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More Problems With Recursion

l It turns out that calling a function takes a 
little bit of time

l It’s actually slightly more efficient to do 
things iteratively than recursively!

lSo...

9. August, 2000 CSE 142 Summer 2000 — Isaac Kunen R-18

Why on Earth Would We Do It? 

lSome problems are very hard to solve 
without recursion
➤In this case, we may give up a little bit of 

performance (not much!) and use a recursion

l It’s fun!  (Really, it is!)
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How to Spot Recursion

lA good candidate for a recursive function 
is one in which the problem can be split 
apart into two smaller problems of the 
same kind

lBe careful!  Fibonacci sounds like a good 
candidate by that criteria!

9. August, 2000 CSE 142 Summer 2000 — Isaac Kunen R-20

Example: Path planning

F
0    1   2   3   4   5   6  7

0
1
2
3
4
5
6
7
8
9

y

x

Problem: Can we get through
the maze?

Store the board as an array

F = finish
X = blocked
‘ ’ = open
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Base Cases

l If we are at the end (‘F’) then return true

l If we have nowhere to go, then return 
false
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Recursive Cases

lWhat should we do if we aren’t blocked, 

and we aren’t at the end?

➤Pretend that the current space is blocked, 

and try to continue the path in every direction

➤If any one of those recursive cases succeed, 

then we succeed, otherwise we fail
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A Helper Function

int legalMove(char 
m[MAXX][MAXY], int x, int y){

return (x >=0 && x < MAXX &&

y >= 0 && y < MAXY &&

m[x][y] != ‘X’);

}
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Elegant Solution

int isPath(char m[MAXX][MAXY], int x, int y){

if (m[x][y] == ‘F’) return TRUE;

m[x][y] = ‘X’;

return (legalMove(m,x+1,y) && 
isPath(m,x+1,y))

||(legalMove(m,x-1,y) && isPath(m,x-1,y))

||(legalMove(m,x,y+1) && isPath(m,x,y+1))

||(legalMove(m,x,y-1) && isPath(m,x,y-1));

}
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Example:
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Summary:

lRecursion is a useful programming 
technique if used properly
➤Can make hard problems easier
➤Can make some problems worse

lRecursion requires you think differently 
about your program
➤Split up the problem into smaller pieces


