
1

9. August, 2000 CSE 142 Summer 2000 — Isaac Kunen R-1

CSE 142
Programming I

Recursion

9. August, 2000 CSE 142 Summer 2000 — Isaac Kunen R-2

Remember Static Call Graphs

main()

washerArea()

diskArea()

printf() scanf()

9. August, 2000 CSE 142 Summer 2000 — Isaac Kunen R-3

What is Recursion

lA program contains recursion if there is a
cycle in the static call graph
➤We call the functions involved recursive

factorial()

9. August, 2000 CSE 142 Summer 2000 — Isaac Kunen R-4

Huh?!

lYou probably have a few questions:

➤How can this work?

➤Why would I want to do this?

➤Isn’t there another way?

9. August, 2000 CSE 142 Summer 2000 — Isaac Kunen R-5

Factorial Function

lHow do we think of a factorial?

➤“N factorial is 1*2*3*… all the way up to N”

➤“N factorial is N times N-1 factorial”

9. August, 2000 CSE 142 Summer 2000 — Isaac Kunen R-6

Iterative Factorial

int factorial(int n){

int product, i;

product = 1;

for (i=1; i<=n; i++)

product = product * i;

return product;

}

2

9. August, 2000 CSE 142 Summer 2000 — Isaac Kunen R-7

Recursive Factorial

int factorial(int n){

int product;

if (n <= 1) product = 1;

else product = n * factorial(n-1);

return product;

}

9. August, 2000 CSE 142 Summer 2000 — Isaac Kunen R-8

Yikes!

lTracing the recursion is easy as long as
we keep in mind our function basics:

➤Parameters are local to a function—created
when the function starts, and destroyed when
the function ends

➤Parameters are initialized by copying the
arguments into the parameters

9. August, 2000 CSE 142 Summer 2000 — Isaac Kunen R-9

Important Point!

lEVERY recursion must have a base case
and an iterative case

➤The iterative case is what makes our program
loop—without it it would not be a recursion

➤The base case is what stops our program
from looping—without it, we will loop forever!

9. August, 2000 CSE 142 Summer 2000 — Isaac Kunen R-10

Another Example

lFibonacci numbers
lRecall: each Fibonacci number is the sum

of the previous two

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, etc.

lProblem: Find the nth Fibonacci number

9. August, 2000 CSE 142 Summer 2000 — Isaac Kunen R-11

We Can Do This Iteratively
int fibonacci(int n){

int prev, cur, next;

prev = 1; cur = 1;

for (n = n-1; n > 0; n--){

next = prev + cur;

prev = cur;

cur = next;

}

return cur;

}
9. August, 2000 CSE 142 Summer 2000 — Isaac Kunen R-12

We Can Do This Recursively

int fibonacci(int n){

int result;

if (n <= 1) result = 1;

else result = fibonacci(n-1) +

fibonacci(n-2);

return result;

}

3

9. August, 2000 CSE 142 Summer 2000 — Isaac Kunen R-13

Let’s Examine Our Choices

lWhich solution is easier to understand?

lWhich solution makes more work for the
computer?

lWhich method makes sense for each of
our two problems?

9. August, 2000 CSE 142 Summer 2000 — Isaac Kunen R-14

Warning!

The Surgeon General has determined
that

computing the Fibonacci sequence
recursively is hazardous to your

computer’s
performance.

9. August, 2000 CSE 142 Summer 2000 — Isaac Kunen R-15

What Can We Do Recursively?

l It turns out that anything we can do
iteratively we can do recursively.

lLikewise, anything we can do recursively,
we can do iteratively.

lSo, why do we care?

9. August, 2000 CSE 142 Summer 2000 — Isaac Kunen R-16

Why Would We Use Recursion?

lSome problems are much easier to
formulate as a recursion, so it makes our
life easier (we’ll see examples)

lSome programming languages don’t have
loops!
➤Some don’t even have variables! (!!!!)

9. August, 2000 CSE 142 Summer 2000 — Isaac Kunen R-17

More Problems With Recursion

l It turns out that calling a function takes a
little bit of time

l It’s actually slightly more efficient to do
things iteratively than recursively!

lSo...

9. August, 2000 CSE 142 Summer 2000 — Isaac Kunen R-18

Why on Earth Would We Do It?

lSome problems are very hard to solve
without recursion
➤In this case, we may give up a little bit of

performance (not much!) and use a recursion

l It’s fun! (Really, it is!)

4

9. August, 2000 CSE 142 Summer 2000 — Isaac Kunen R-19

How to Spot Recursion

lA good candidate for a recursive function
is one in which the problem can be split
apart into two smaller problems of the
same kind

lBe careful! Fibonacci sounds like a good
candidate by that criteria!

9. August, 2000 CSE 142 Summer 2000 — Isaac Kunen R-20

Example: Path planning

F
0 1 2 3 4 5 6 7

0
1
2
3
4
5
6
7
8
9

y

x

Problem: Can we get through
the maze?

Store the board as an array

F = finish
X = blocked
‘ ’ = open

9. August, 2000 CSE 142 Summer 2000 — Isaac Kunen R-21

Base Cases

l If we are at the end (‘F’) then return true

l If we have nowhere to go, then return
false

9. August, 2000 CSE 142 Summer 2000 — Isaac Kunen R-22

Recursive Cases

lWhat should we do if we aren’t blocked,

and we aren’t at the end?

➤Pretend that the current space is blocked,

and try to continue the path in every direction

➤If any one of those recursive cases succeed,

then we succeed, otherwise we fail

9. August, 2000 CSE 142 Summer 2000 — Isaac Kunen R-23

A Helper Function

int legalMove(char
m[MAXX][MAXY], int x, int y){

return (x >=0 && x < MAXX &&

y >= 0 && y < MAXY &&

m[x][y] != ‘X’);

}

9. August, 2000 CSE 142 Summer 2000 — Isaac Kunen R-24

Elegant Solution

int isPath(char m[MAXX][MAXY], int x, int y){

if (m[x][y] == ‘F’) return TRUE;

m[x][y] = ‘X’;

return (legalMove(m,x+1,y) &&
isPath(m,x+1,y))

||(legalMove(m,x-1,y) && isPath(m,x-1,y))

||(legalMove(m,x,y+1) && isPath(m,x,y+1))

||(legalMove(m,x,y-1) && isPath(m,x,y-1));

}

5

9. August, 2000 CSE 142 Summer 2000 — Isaac Kunen R-25

Example:

F
0 1 2 3 4 5 6 7

0
1
2
3
4
5
6
7
8
9

y

x
9. August, 2000 CSE 142 Summer 2000 — Isaac Kunen R-26

Example:

F
0 1 2 3 4 5 6 7

0
1
2
3
4
5
6
7
8
9

y

x

9. August, 2000 CSE 142 Summer 2000 — Isaac Kunen R-27

Example:

F
0 1 2 3 4 5 6 7

0
1
2
3
4
5
6
7
8
9

y

x
9. August, 2000 CSE 142 Summer 2000 — Isaac Kunen R-28

Summary:

lRecursion is a useful programming
technique if used properly
➤Can make hard problems easier
➤Can make some problems worse

lRecursion requires you think differently
about your program
➤Split up the problem into smaller pieces

