CSE 142
Programming |

Recursion

9. August, 2000 CSE 142 Summer 2000 — Isaac Kunen R1

Remember Static Call Graphs

‘printf Q) ‘

‘washerArea()‘ ‘scanf()‘

diskArea()

9. August, 2000 CSE 142 Summer 2000 — Isaac Kunen R2

What is Recursion

® A program contains recursion if there is a
cycle in the static call graph
»We call the functions involved recursive

factorial ()

9. August, 2000 CSE 142 Summer 2000 — Isaac Kunen

R-3

Huh?!

® You probably have a few questions:

»How can this work?
»Why would | want to do this?

»Isn’'t there another way?

9. August, 2000 CSE 142 Summer 2000 — Isaac Kunen R4

Factorial Function

® How do we think of a factorial?

»“N factorial is 1*2*3*... all the way up to N”

»“N factorial is N times N-1 factorial”

9. August, 2000 CSE 142 Summer 2000 — Isaac Kunen

R-5

Iterative Factorial

int factorial (int n){

int product, i;

product = 1;

for (i=1; i<=n; i++)

product = product * i;

return product;

}

9. August, 2000 CSE 142 Summer 2000 — Isaac Kunen

R-6

Recursive Factorial

int factorial (int n){
int product;

if (n <= 1) product = 1;
else product = n * factorial(n-1);

return product;

}

9. August, 2000 CSE 142 Summer 2000 — Isaac Kunen R7

Yikes!

® Tracing the recursion is easy as long as
we keep in mind our function basics:
»Parameters are local to a function—created
when the function starts, and destroyed when
the function ends
»Parameters are initialized by copying the
arguments into the parameters

9. August, 2000 CSE 142 Summer 2000 — Isaac Kunen R-8

Important Point!

® EVERY recursion must have a base case
and an iterative case

»The iterative case is what makes our program
loop—without it it would not be a recursion

»The base case is what stops our program
from looping—without it, we will loop forever!

9. August, 2000 CSE 142 Summer 2000 — Isaac Kunen R9

Another Example

® Fibonacci numbers
® Recall: each Fibonacci number is the sum

of the previous two

1,1,2,3,5,8, 13, 21, 34, 55, etc.

® Problem: Find the nth Fibonacci number

9. August, 2000 CSE 142 Summer 2000 — Isaac Kunen R10

We Can Do This Iteratively

int fibonacci (int n){

int prev, cur, next;

prev = 1; cur = 1;

for (n = n-1; n > 0; n--){
next = prev + cur;
prev = cur;
cur = next;

}

return cur;

}

9. August, 2000 CSE 142 Summer 2000 — Isaac Kunen R11

We Can Do This Recursively

int fibonacci (int n){
int result;

if (n <= 1) result = 1;
else result = fibonacci(n-1) +
fibonacci (n-2) ;

return result;

}

9. August, 2000 CSE 142 Summer 2000 — Isaac Kunen R12

Let’s Examine Our Choices

® Which solution is easier to understand?

® Which solution makes more work for the
computer?

@ \Which method makes sense for each of
our two problems?

9. August, 2000 CSE 142 Summer 2000 — Isaac Kunen R13

Warning!

The Surgeon General has determined
that

computing the Fibonacci sequence
recursively is hazardous to your

s
computer’s

performance.

9. August, 2000 CSE 142 Summer 2000 — Isaac Kunen R-14

What Can We Do Recursively?

® |t turns out that anything we can do
iteratively we can do recursively.

® Likewise, anything we can do recursively,
we can do iteratively.

® So, why do we care?

9. August, 2000 CSE 142 Summer 2000 — Isaac Kunen R-15

Why Would We Use Recursion?

® Some problems are much easier to
formulate as a recursion, so it makes our
life easier (we’ll see examples)

® Some programming languages don’'t have
loops!
»Some don't even have variables! (!!!!)

9. August, 2000 CSE 142 Summer 2000 — Isaac Kunen R-16

More Problems With Recursion

® |t turns out that calling a function takes a
little bit of time

@ |t’s actually slightly more efficient to do
things iteratively than recursively!

® So...

9. August, 2000 CSE 142 Summer 2000 — Isaac Kunen R-17

Why on Earth Would We Do It?

® Some problems are very hard to solve
without recursion

»In this case, we may give up a little bit of
performance (not much!) and use a recursion

®|t’'s fun! (Really, itis!)

9. August, 2000 CSE 142 Summer 2000 — Isaac Kunen R-18

How to Spot Recursion

® A good candidate for a recursive function
is one in which the problem can be split
apart into two smaller problems of the
same kind

® Be careful! Fibonacci sounds like a good
candidate by that criteria!

9. August, 2000 CSE 142 Summer 2000 — Isaac Kunen R19

Example: Path planning

0
1
2 Problem: Can we get through
3 the maze?
4
y 5 Store the board as an array
6
7 F = finish
8 X = blocked
9 ‘= open
X
9. August, 2000 CSE 142 Summer 2000 — Isaac Kunen R-20

Base Cases

® |f we are at the end (‘F’) then return true

@ If we have nowhere to go, then return
false

9. August, 2000 CSE 142 Summer 2000 — Isaac Kunen R21

Recursive Cases

® What should we do if we aren’t blocked,
and we aren’t at the end?

»Pretend that the current space is blocked,
and try to continue the path in every direction

»|f any one of those recursive cases succeed,
then we succeed, otherwise we fail

9. August, 2000 CSE 142 Summer 2000 — Isaac Kunen R22

A Helper Function

int legalMove (char
m[MAXX] [MAXY], int x, int y){

return (x >=0 && x < MAXX &&

y >= 0 & y < MAXY &&
m[x] [y] != ‘X");

9. August, 2000 CSE 142 Summer 2000 — Isaac Kunen R23

Elegant Solution

int isPath(char m[MAXX] [MAXY], int x, int y){
if (m[x] [yl == ‘F’) return TRUE;

m[x] [yl = ‘X’;
return (legalMove (m,x+1,y) &&
isPath (m, x+1,y))

|| (LegalMove (m,x-1,y) && isPath(m,x-1,y))
|| (LegalMove (m,x,y+1l) && isPath(m,x,y+1))
|| (LegalMove (m,x,y-1) && isPath(m,x,y-1));

}9 August, 2000 CSE 142 Summer 2000 — Isaac Kunen R24

Example:

ol B Bl B
NEEEEEEE B
e EEEEEE B B
SsH H H N B
o Il H N HE

9. August, 2000 CSE 142 Summer 2000 — Isaac Kunen R-25

Example:

NEEEEEEE B
oANNEEEN |
NEEEEEE B B
~HEE B B B
-l Il H N EE

9. August, 2000 CSE 142 Summer 2000 — Isaac Kunen R-26

Example:

ol B Bl B
NEEEEEEE B
e EEEEEE B B
SsH H H N B
o Il H N HE

9. August, 2000 CSE 142 Summer 2000 — Isaac Kunen R27

Summary:

® Recursion is a useful programming
technique if used properly
»Can make hard problems easier
»Can make some problems worse

® Recursion requires you think differently
about your program
» Split up the problem into smaller pieces

9. August, 2000 CSE 142 Summer 2000 — Isaac Kunen R-28

