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CSE 142
Programming I

File I/O
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What is a File

lPersistent storage

➤Memory goes away when the program ends 
(or the computer crashes, etc.)

➤Files must be actively deleted
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Why Not Always Use Files

lSlow
➤Thousands (hundreds of thousands?) of 

times slower than memory

lSequential access
➤It’s hard to jump around to find the data we’re 

looking for
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Why Would We Use Files?

lWe often have to store data to use later
➤text files
➤programs
➤web pages
➤images
➤etc.
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Basic File Operations

lOpen a file
lWrite to a file
lRead from a file
lClose a file

(There’s more, but this is enough for now)
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#include?

lEverything we need to use files is in 
stdio.h
➤In fact, we’ve been using files all along—

more about this later
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Opening a File

l “Opening” a file makes a connection 
between the file (on disk) and your 
program

lOnce the file is open, we can read or write 
to it
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The FILE Structure

lThere’s a special structure called FILE 
which contains information for the 
computer to access your file

lYou never have to look inside one of 
these, just pass them to functions
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Opening a File

int main(void){

FILE *input;

input = fopen(“foo.txt”, “r”);

if (input == NULL) {

printf(“Couldn’t open the file!\n”);

exit -1;

}

...

}

A FILE pointer
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fopen()

l fopen() takes a filename and a mode 
string as arguments
➤The filename says which string to open
➤The mode strings tells the computer what you 

are going to do with the file

l fopen() returns a pointer to a FILE 
structure
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Mode Strings

l “r” means read

l “w” means write

l “a” means append (write at the end)
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NULL

lNULL is a special pointer that does not 
point to anything

l If fopen() returns NULL, then we know that 
there was an error opening the file—it 
didn’t work
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Closing a File

lClosing a file removes the connection 
between the file on disk, and your 
program
➤If you do not close your files, you may lose 

changes that were made to them!
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Closing Our File

lTo close our the file associated with the 
FILE * input, we just need to write:

fclose(input);

lAfter this command we can no longer 
access the file! 
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I/O and Files

lWe’ve been doing file I/O all along!

lC has two special files: stdin and stdout

lstdin is a file that reads from the keyboard

lstdout is a file that writes to the console
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Writing to a File

FILE *output;

output = fopen(“bar.txt”, “w”);

if (output == NULL) exit(-1);

fprintf(output, “Hello!”);
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fprintf()

lWorks exactly like printf, except it has an 
argument telling which file to print to

l If we specify stdout as the file, then it is 
the same as using printf

printf(“Apple\n”);

fprintf(stdout, “Apple\n”);
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Reading from a File

FILE *input;

int x;

input = fopen(“foo.txt”, “w”);

if (input == NULL) exit(-1);

fscanf(input, “%d”, &x);
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fscanf()

lWorks exactly like scanf, except it has an 
argument telling which file to print to

l If we specify stdin as the file, then it is 
the same as using scanf

scanf(“%d”, &age);

fscanf(stdin, “%d”, &age);
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End of File (EOF)

l fscanf returns the number of items 
assigned (just like scanf) unless it reaches 
the end of the file

l If fscanf reaches the end of the file, then it 
returns the constant EOF
➤We’ll see how to use this
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File I/O Application

lCopy a file.

lWhat do we need to do?
➤Get filenames from the user
➤Open the files
➤Copy one file to the other
➤Close the files
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The Copy Function

void fcopy(FILE *to, FILE *from){

char temp;

int status;

status = fscanf(from, "%c", &temp);

while(status != EOF){

fprintf(to, "%c", temp);

status = fscanf(from, "%c", &temp);

}

return;

}
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The Rest of the Program
int main(void){

char infile[100];

char outfile[100];

FILE *in, *out;

printf("Copy from: ");

scanf("%s", infile);

printf("Copy to: ");

scanf("%s", outfile);

in = fopen(infile, "r");

out = fopen(outfile, "w");

if ((in == NULL) 

|| (out == NULL)){

printf("Ack!\n");

exit(-1);

}

fcopy(out, in);

fclose(out);

fclose(in);

return 0;

}


