
1

11. August, 2000 CSE 142 Summer 2000 — Isaac Kunen Q-1

CSE 142
Programming I

File I/O

11. August, 2000 CSE 142 Summer 2000 — Isaac Kunen Q-2

What is a File

lPersistent storage

➤Memory goes away when the program ends 
(or the computer crashes, etc.)

➤Files must be actively deleted

11. August, 2000 CSE 142 Summer 2000 — Isaac Kunen Q-3

Why Not Always Use Files

lSlow
➤Thousands (hundreds of thousands?) of 

times slower than memory

lSequential access
➤It’s hard to jump around to find the data we’re 

looking for

11. August, 2000 CSE 142 Summer 2000 — Isaac Kunen Q-4

Why Would We Use Files?

lWe often have to store data to use later
➤text files
➤programs
➤web pages
➤images
➤etc.

11. August, 2000 CSE 142 Summer 2000 — Isaac Kunen Q-5

Basic File Operations

lOpen a file
lWrite to a file
lRead from a file
lClose a file

(There’s more, but this is enough for now)

11. August, 2000 CSE 142 Summer 2000 — Isaac Kunen Q-6

#include?

lEverything we need to use files is in 
stdio.h
➤In fact, we’ve been using files all along—

more about this later



2

11. August, 2000 CSE 142 Summer 2000 — Isaac Kunen Q-7

Opening a File

l “Opening” a file makes a connection 
between the file (on disk) and your 
program

lOnce the file is open, we can read or write 
to it

11. August, 2000 CSE 142 Summer 2000 — Isaac Kunen Q-8

The FILE Structure

lThere’s a special structure called FILE 
which contains information for the 
computer to access your file

lYou never have to look inside one of 
these, just pass them to functions

11. August, 2000 CSE 142 Summer 2000 — Isaac Kunen Q-9

Opening a File

int main(void){

FILE *input;

input = fopen(“foo.txt”, “r”);

if (input == NULL) {

printf(“Couldn’t open the file!\n”);

exit -1;

}

...

}

A FILE pointer

11. August, 2000 CSE 142 Summer 2000 — Isaac Kunen Q-10

fopen()

l fopen() takes a filename and a mode 
string as arguments
➤The filename says which string to open
➤The mode strings tells the computer what you 

are going to do with the file

l fopen() returns a pointer to a FILE 
structure

11. August, 2000 CSE 142 Summer 2000 — Isaac Kunen Q-11

Mode Strings

l “r” means read

l “w” means write

l “a” means append (write at the end)

11. August, 2000 CSE 142 Summer 2000 — Isaac Kunen Q-12

NULL

lNULL is a special pointer that does not 
point to anything

l If fopen() returns NULL, then we know that 
there was an error opening the file—it 
didn’t work



3

11. August, 2000 CSE 142 Summer 2000 — Isaac Kunen Q-13

Closing a File

lClosing a file removes the connection 
between the file on disk, and your 
program
➤If you do not close your files, you may lose 

changes that were made to them!

11. August, 2000 CSE 142 Summer 2000 — Isaac Kunen Q-14

Closing Our File

lTo close our the file associated with the 
FILE * input, we just need to write:

fclose(input);

lAfter this command we can no longer 
access the file! 

11. August, 2000 CSE 142 Summer 2000 — Isaac Kunen Q-15

I/O and Files

lWe’ve been doing file I/O all along!

lC has two special files: stdin and stdout

lstdin is a file that reads from the keyboard

lstdout is a file that writes to the console

11. August, 2000 CSE 142 Summer 2000 — Isaac Kunen Q-16

Writing to a File

FILE *output;

output = fopen(“bar.txt”, “w”);

if (output == NULL) exit(-1);

fprintf(output, “Hello!”);

11. August, 2000 CSE 142 Summer 2000 — Isaac Kunen Q-17

fprintf()

lWorks exactly like printf, except it has an 
argument telling which file to print to

l If we specify stdout as the file, then it is 
the same as using printf

printf(“Apple\n”);

fprintf(stdout, “Apple\n”);

11. August, 2000 CSE 142 Summer 2000 — Isaac Kunen Q-18

Reading from a File

FILE *input;

int x;

input = fopen(“foo.txt”, “w”);

if (input == NULL) exit(-1);

fscanf(input, “%d”, &x);



4

11. August, 2000 CSE 142 Summer 2000 — Isaac Kunen Q-19

fscanf()

lWorks exactly like scanf, except it has an 
argument telling which file to print to

l If we specify stdin as the file, then it is 
the same as using scanf

scanf(“%d”, &age);

fscanf(stdin, “%d”, &age);

11. August, 2000 CSE 142 Summer 2000 — Isaac Kunen Q-20

End of File (EOF)

l fscanf returns the number of items 
assigned (just like scanf) unless it reaches 
the end of the file

l If fscanf reaches the end of the file, then it 
returns the constant EOF
➤We’ll see how to use this

11. August, 2000 CSE 142 Summer 2000 — Isaac Kunen Q-21

File I/O Application

lCopy a file.

lWhat do we need to do?
➤Get filenames from the user
➤Open the files
➤Copy one file to the other
➤Close the files

11. August, 2000 CSE 142 Summer 2000 — Isaac Kunen Q-22

The Copy Function

void fcopy(FILE *to, FILE *from){

char temp;

int status;

status = fscanf(from, "%c", &temp);

while(status != EOF){

fprintf(to, "%c", temp);

status = fscanf(from, "%c", &temp);

}

return;

}

11. August, 2000 CSE 142 Summer 2000 — Isaac Kunen Q-23

The Rest of the Program
int main(void){

char infile[100];

char outfile[100];

FILE *in, *out;

printf("Copy from: ");

scanf("%s", infile);

printf("Copy to: ");

scanf("%s", outfile);

in = fopen(infile, "r");

out = fopen(outfile, "w");

if ((in == NULL) 

|| (out == NULL)){

printf("Ack!\n");

exit(-1);

}

fcopy(out, in);

fclose(out);

fclose(in);

return 0;

}


