
1

33. July, 2000 CSE 142 Summer 2000 — Isaac Kunen O-1

CSE 142
Programming I

Structures

33. July, 2000 CSE 142 Summer 2000 — Isaac Kunen O-2

Data Structures

lData structures give us new ways to
organize our data
➤Store large amounts of data
➤Store variable amounts of data
➤Keep relevant data together

lWhich ones did arrays help us with?

33. July, 2000 CSE 142 Summer 2000 — Isaac Kunen O-3

Structs

lA struct collects several variables,
possibly of different types, together

driver’s name string
sex char
age int
height double

33. July, 2000 CSE 142 Summer 2000 — Isaac Kunen O-4

Defining a struct

#define MAX_NAME 40

typedef struct{

char name[MAX_NAME];

char sex;

int age;

double height;

} driver; YES!

33. July, 2000 CSE 142 Summer 2000 — Isaac Kunen O-5

What Does This Do?

lThis typedef struct {…} name;
construct only declares a new type—it
creates NO storage.

lWe can now make variables of the type
driver

driver alice, bob;
33. July, 2000 CSE 142 Summer 2000 — Isaac Kunen O-6

Terminology

lSometimes people will call a struct a
“structure” or a “record”

l It’s components are often called “records”
or “fields”

2

33. July, 2000 CSE 142 Summer 2000 — Isaac Kunen O-7

Things You Can Do

lYou CAN use = to assign entire structs!

lYou CAN use structs are return types

33. July, 2000 CSE 142 Summer 2000 — Isaac Kunen O-8

Things you CAN’T do

lYou CAN’T use == to compare structs

lYou CAN’T use printf/scanf on entire
structs
➤You can scanf and printf the fields

33. July, 2000 CSE 142 Summer 2000 — Isaac Kunen O-9

Summary:

structsstringsarrays

yesnonouse = to assign

nononouse == to compare
noyesnouse printf/scanf

yesyesyesuse as parameters

yesnonouse as return vals.

33. July, 2000 CSE 142 Summer 2000 — Isaac Kunen O-10

Accessing Struct Fields

lWe can access the fields of a struct by
using the . (dot) operator:

driver sara_lee;
sara_lee.sex = ‘F’;
sara_lee.height = ‘3.14’;

33. July, 2000 CSE 142 Summer 2000 — Isaac Kunen O-11

Initializing Structs

lWe could just assign all the fields by hand:

driver bob;

strcpy(bob.name, “Bob”);

bob.sex = ‘M’;

bob.age = 112;

bob.height = 4.98;

33. July, 2000 CSE 142 Summer 2000 — Isaac Kunen O-12

Initializing Structs

l…or we could do it at the declaration:

driver bob = {“Bob”,

‘M’,

112,

4.98};

3

33. July, 2000 CSE 142 Summer 2000 — Isaac Kunen O-13

Assigning Structs

driver bob, opie;

/* initialize bob in here */

opie = bob;

/* the same as copying all

of the fields by hand */

33. July, 2000 CSE 142 Summer 2000 — Isaac Kunen O-14

Points as Structs

lWe can make a struct to hold a point in
three dimensional space:

typedef struct{

double x, y;

} point_2d;

33. July, 2000 CSE 142 Summer 2000 — Isaac Kunen O-15

Structs and Functions

lWe can write a midpoint function that
returns the midpoint of a line in 2-space

lWhat is the right formula?

33. July, 2000 CSE 142 Summer 2000 — Isaac Kunen O-16

Midpoint Function

point_2d midpoint(point_2d a,
point_2d b){

}

33. July, 2000 CSE 142 Summer 2000 — Isaac Kunen O-17

Midpoint With Pointers

void midpoint(point_2d a,
point_2d b, point_2d *mid){

}
33. July, 2000 CSE 142 Summer 2000 — Isaac Kunen O-18

Why the -> ?

lThe dot (.) operator says “look inside the
struct”

lThe -> operator says “follow the pointer,
and look inside the struct you find there”

4

33. July, 2000 CSE 142 Summer 2000 — Isaac Kunen O-19

The -> Operator

lAssume the following situation

point_2d foo = {2.1, 5.4};

point_2d *fooPointer;

fooPointer = &foo;

33. July, 2000 CSE 142 Summer 2000 — Isaac Kunen O-20

The -> Operator

l In this setup,

fooPointer->x;

means the same thing as

(*fooPointer).x;

33. July, 2000 CSE 142 Summer 2000 — Isaac Kunen O-21

Testing Structs for Equality

lRemember: we can’t use ==

lWe can write a function:

int points_equal(point_2d pt1,
point_2d pt2);

33. July, 2000 CSE 142 Summer 2000 — Isaac Kunen O-22

Struct I/O

lLikewise, we cannot scanf or printf structs,
but we can easily write functions to do it
for us.

lExample: How would we read in a point?

33. July, 2000 CSE 142 Summer 2000 — Isaac Kunen O-23

Hierarchical Structs

typedef struct{

double x, y;

} point;

typedef struct{

double width, height}

} dimensions;

33. July, 2000 CSE 142 Summer 2000 — Isaac Kunen O-24

Hierarchical Structs

typedef struct{

dimensions size;

point position;

int line_color, fill_color;

} rectangle;

5

33. July, 2000 CSE 142 Summer 2000 — Isaac Kunen O-25

Accessing This Structure

rectangle a;

a.size.width = 3.0;

a.size.height = 4.0;

a.position.x = 10.0;

a.position.y = 20.0;

a.line_color = RED;

a.fill_color = MAUVE;

33. July, 2000 CSE 142 Summer 2000 — Isaac Kunen O-26

Calculating Types

l Given:

rectangle r;

rectangle *rp;

lWhat are the types?

r.size

r.size.width;

rp->size;

rp->position.x;

