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CSE 142
Programming I

Structures
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Data Structures

lData structures give us new ways to 
organize our data
➤Store large amounts of data
➤Store variable amounts of data
➤Keep relevant data together

lWhich ones did arrays help us with?
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Structs

lA struct collects several variables, 
possibly of different types, together

driver’s name string
sex char
age int
height double
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Defining a struct

#define MAX_NAME 40

typedef struct{

char name[MAX_NAME];

char sex;

int age;

double height;

} driver; YES!
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What Does This Do?

lThis typedef struct {…} name; 
construct only declares a new type—it 
creates NO storage.

lWe can now make variables of the type 
driver

driver alice, bob;
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Terminology

lSometimes people will call a struct a 
“structure” or a “record”

l It’s components are often called “records” 
or “fields”
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Things You Can Do

lYou CAN use = to assign entire structs!

lYou CAN use structs are return types
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Things you CAN’T do

lYou CAN’T use == to compare structs

lYou CAN’T use printf/scanf on entire 
structs
➤You can scanf and printf the fields
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Summary:

structsstringsarrays

yesnonouse = to assign

nononouse == to compare
noyesnouse printf/scanf

yesyesyesuse as parameters

yesnonouse as return vals.
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Accessing Struct Fields

lWe can access the fields of a struct by 
using the . (dot) operator:

driver sara_lee;
sara_lee.sex = ‘F’;
sara_lee.height = ‘3.14’;
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Initializing Structs

lWe could just assign all the fields by hand:

driver bob;

strcpy(bob.name, “Bob”);

bob.sex = ‘M’;

bob.age = 112;

bob.height = 4.98;
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Initializing Structs

l…or we could do it at the declaration:

driver bob = {“Bob”,

‘M’,

112,

4.98};
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Assigning Structs

driver bob, opie;

/* initialize bob in here */

opie = bob;  

/* the same as copying all      

of the fields by hand */
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Points as Structs

lWe can make a struct to hold a point in 
three dimensional space:

typedef struct{

double x, y;

} point_2d;
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Structs and Functions

lWe can write a midpoint function that 
returns the midpoint of a line in 2-space

lWhat is the right formula?
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Midpoint Function

point_2d midpoint(point_2d a, 
point_2d b){

}
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Midpoint With Pointers

void midpoint(point_2d a, 
point_2d b, point_2d *mid){

}
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Why the ->  ?

lThe dot (.) operator says “look inside the 
struct”

lThe -> operator says “follow the pointer, 
and look inside the struct you find there”
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The -> Operator

lAssume the following situation

point_2d foo = {2.1, 5.4};

point_2d *fooPointer;

fooPointer = &foo;
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The -> Operator

l In this setup, 

fooPointer->x;

means the same thing as

(*fooPointer).x;
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Testing Structs for Equality

lRemember: we can’t use ==

lWe can write a function:

int points_equal(point_2d pt1, 
point_2d pt2);
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Struct I/O

lLikewise, we cannot scanf or printf structs, 
but we can easily write functions to do it 
for us.

lExample: How would we read in a point?
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Hierarchical Structs

typedef struct{

double x, y;

} point;

typedef struct{

double width, height}

} dimensions;
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Hierarchical Structs

typedef struct{

dimensions size;

point position;

int line_color, fill_color;

} rectangle;
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Accessing This Structure

rectangle a;

a.size.width = 3.0;

a.size.height = 4.0;

a.position.x = 10.0;

a.position.y = 20.0;

a.line_color = RED;

a.fill_color = MAUVE;
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Calculating Types

l Given:

rectangle r;

rectangle *rp;

lWhat are the types?

r.size

r.size.width;

rp->size;

rp->position.x;


