
1

17. July, 2000 CSE 142 Summer 2000 — Isaac Kunen J-1

CSE 142
Programming I

Pointers and Output
Parameters

18. July, 2000 CSE 142 Summer 2000 — Isaac Kunen J-2

Review: Functions

int factorial(int n){

int product, i;

product = 1;

for (i=1; i<=n; i++)

product = product * i;

return product;

}

18. July, 2000 CSE 142 Summer 2000 — Isaac Kunen J-3

Review: Local Variables

int main(void){

int i, ans;

i = 3;

ans = factorial(i+1);

return 0;

}

main

i ans

fact

n i ans

18. July, 2000 CSE 142 Summer 2000 — Isaac Kunen J-4

Local Variables: Summary

lParameters and variables defined in a
function are local to it

lCreated on entry and deleted on exit
lArguments are copied into parameters

lNo global variables in 142!

18. July, 2000 CSE 142 Summer 2000 — Isaac Kunen J-5

Call by Value

void swap

(int x, y){

int temp;

temp = x;

x = y;

y = temp;

return;

}

int main(void){

int x = 4;

int y = 5;

swap(x, y);

return 0;

}

18. July, 2000 CSE 142 Summer 2000 — Isaac Kunen J-6

Call by Value

lCall by Value means that the value of the
argument is found and copied into the
parameter

lAll functions in C use call by value
➤What limitations do we have?
➤How do we get around those limitations?

2

18. July, 2000 CSE 142 Summer 2000 — Isaac Kunen J-7

Values and Locations

lSwap needed to know more than the
values of its arguments—it needed to
know where they were

lRemember: each variable is stored in a
place in memory, and each place in
memory has an address

18. July, 2000 CSE 142 Summer 2000 — Isaac Kunen J-8

New Type: Pointer

lA pointer contains the address of a
variable

lGiven that address, the computer can find
the variable

32

1024

xp

x

1024:

8004:

18. July, 2000 CSE 142 Summer 2000 — Isaac Kunen J-9

Memory Snapshot

1

2

3

4

5

6

7

8

2

6

214515513

214515513

10

5

5

5

Address Value

int *

int

int *

int

int

int

int *

int *

Type

18. July, 2000 CSE 142 Summer 2000 — Isaac Kunen J-10

Memory Graphically

1(alice):

2(bob):

3(charlie):

4(doug):

5(ely):

6(fran):

7(gomer):

8(hank):

18. July, 2000 CSE 142 Summer 2000 — Isaac Kunen J-11

New Types

lWe had

➤int

➤char

➤double

lNow we have

➤int *

➤char *

➤double *

18. July, 2000 CSE 142 Summer 2000 — Isaac Kunen J-12

New (Unary) Operators

l& is the “address of” operator—it finds the
address of a variable

l* is the “dereference” operator—it finds
the variable a pointer is pointing to

3

18. July, 2000 CSE 142 Summer 2000 — Isaac Kunen J-13

What’s The Type?

lThe & operator takes a variable and
produces a pointer to it
➤if x is an int, &x is an int pointer

lThe * operator takes a pointer and gives
you the variable it points to
➤if y is an int pointer, then *y is an int

18. July, 2000 CSE 142 Summer 2000 — Isaac Kunen J-14

What’s the Type?

lWhat are the types of
➤alice
➤bob
➤*charlie
➤&doug
➤*ely

18. July, 2000 CSE 142 Summer 2000 — Isaac Kunen J-15

Some Simple Commands

lWhat if we execute
➤alice = &fran;

➤alice = fran;

➤doug = *gomer;

➤ely = gomer;

➤charlie = *ely;

➤ely = &bob;

18. July, 2000 CSE 142 Summer 2000 — Isaac Kunen J-16

Why Use Pointers

l In 142 we’ll use pointers for output
parameters
➤We can solve the problem of only having one

return value!

l In more advanced programming, pointers
are used to create fancy data structures

18. July, 2000 CSE 142 Summer 2000 — Isaac Kunen J-17

Output Parameters

l If everything is pass by value, how can we
change a variable in the calling function?
➤Do not pass the variable, pass a pointer to

the function
➤The pointer is copied, but still points to the

same place in memory
➤Now if we access that memory location, we

can modify variables outside of our function

18. July, 2000 CSE 142 Summer 2000 — Isaac Kunen J-18

Swap Rewritten

lRemember what happened when we
wrote swap:
➤The values got copied and swapped in the

function
➤The values did not get swapped in main()

l Idea! Pass in pointers to the variables
and use them to swap the values

4

18. July, 2000 CSE 142 Summer 2000 — Isaac Kunen J-19

Swap Rewritten

void swap(int *x, int *y){

int temp;

temp = *x;

*x = *y;

*y = temp;

return;

}
18. July, 2000 CSE 142 Summer 2000 — Isaac Kunen J-20

What’s Happening Here?

lRemember: x and y are pointers

➤If we changed x or y, we would change the
location the pointed to

➤If we change *x or *y, we change the value in
the variable they point to

18. July, 2000 CSE 142 Summer 2000 — Isaac Kunen J-21

What Happens in main()?

int main(void){

int a = 1;

int b = 17;

swap(&a, &b);

printf(“%d, %d\n”, a, b);

return 0;

}
18. July, 2000 CSE 142 Summer 2000 — Isaac Kunen J-22

Another Example

/* reflect point through origin */

void reflect(double *x, double *y){

*x = *x * -1;

*y = *y * -1;

return;

}

18. July, 2000 CSE 142 Summer 2000 — Isaac Kunen J-23

Simple Sorting

void sort2(int *num1, int *num2){

if (*num1 > *num2){

swap(num1, num2);

}

return;

}
18. July, 2000 CSE 142 Summer 2000 — Isaac Kunen J-24

Why No & in Call to swap()?

lnum1 and num2 were already pointers

➤swap(&num1, &num2) would pass pointers to

pointers to integers—yuck!

➤We would end up swapping the pointers, not

the values!

5

18. July, 2000 CSE 142 Summer 2000 — Isaac Kunen J-25

* and * and *

l* now has 3 meanings in C (don’t hang the
messenger!):

➤Multiplication

➤Pointer declarations

➤Pointer dereference

18. July, 2000 CSE 142 Summer 2000 — Isaac Kunen J-26

& in scanf()

lThe & in scanf() should make sense now!

➤scanf() must be able to change the values of
our variables

➤so, scanf() takes as arguments pointers to
the variables

➤Why doesn’t printf() use pointers?

18. July, 2000 CSE 142 Summer 2000 — Isaac Kunen J-27

A Screwy scanf() Example

void getCoords(double *x, double *y){

printf(“Enter coordinates:”);

scanf(“%lf %lf”, x, y);

}

lWhy no ampersands?

18. July, 2000 CSE 142 Summer 2000 — Isaac Kunen J-28

Remember!

lA pointer stores an address
➤Reassigning a pointer changes where it points

lThe * operator finds the variable the pointer
points to

lThe & finds the address of a variable

18. July, 2000 CSE 142 Summer 2000 — Isaac Kunen J-29

A Test-Like Question (hint!)

void muddle(int x,
int *y, int *z){

y = z;

x = *y;

*z = x * 2;

x = 3;

return;

}

int main(void){

int x=1, y=2;
int z=3;

muddle(z,&y,&x);

printf(“%d,%d,%d

\n”, x, y, z);

return 0;

}

18. July, 2000 CSE 142 Summer 2000 — Isaac Kunen J-30

Larger Program

lFind out how much change the user has
lTell the user if they have the optimal

arrangement of coins
➤By optimal, we mean the smallest number of

coins

l If sub-optimal, then tell them the best
arrangement

6

18. July, 2000 CSE 142 Summer 2000 — Isaac Kunen J-31

Exercise in Top-Down Design

lWhat we have to do:

