CSE 142
 Programming I

Conditionals

Preview Prologue

- We'll look at ways to change the flow:

28. June, 2000

Conditional ("if") Statement

```
if (condition) statement;
```

 execution path depending on the value of an expression
 $>$ Print an error if the withdrawal amount is more then what is in the account
>Add one to my age if it is my birthday
$>$ If my grade is greater than 3.5 , then celebrate

Conditional Expressions

- Also called "logical", or "Boolean" expressions
- Make use of relational operators
- A relational operator compares two values
- Examples:
($\mathrm{x}<30$)
(12 > y)

Relational Operators			
In Math	In C	In English	
<	<	Less Than	
>	>	Greater Than	
$=$	=	Equal To	
\leq	<=	Less Than or	
\geq	>=	Greater Than	
\#	!=	Not Equal	
28.June, 2000		mmer 2000 - Isace Kunen	F.9

Some Conditional Expressions

```
    air_temperature > 80
    98.6 == body_temperature
    marital status == 'M'
    weight >= 8000
```

28. June, 2000

Multiple Actions

- What if we want to do more things at once?
$>$ Use a compound statement!
- Replace the statement with several statements surrounded by braces: \{ \}
$>$ Sometimes called a block
$>$ Indent each block!

Example: Checking for Eror

```
printf("Enter divisor: ");
scanf("%lf", &divisor);
if (0 == divisor){
    printf("Can't divide by 0!\n");
        exit(0);
    } No;
```

28. June, 2000
CSE 142 Summer 2000 - Isaac Kunen

Value of Boolean Expressions

- Remember, expressions are things in C that have values
- What's the value of a conditional expression?

Values of Boolean Expressions
Conditional expressions are either true or
false
C doesn't have a Boolean Type
C fakes it using integers!
>0 means false
$>$ non-zero (usually 1) means true

Examples:

- Do these examples make sense?
- If so, what are the values assigned?
foo $=7<0$;
bar = 8 ! = 3;

28. June, 2000

CSE 142 Summer 2000 - Isaac Kunen

More Strangeness!

- In fact, this is an expression:

$$
x=6+7
$$

- If it is an expression, then it has a value
- The value of an assignment is the value assigned

The Value of an Assignment

-What does this do?
int foo, bar;
foo $=($ bar $=6) ;$

Strange Example I

- What does this do?
if ($\mathrm{x}=7$)
printf("X is equal to $7 \backslash n$ ");

28. June, 2000

CSE 142 Summer 2000 - Isaac Kunen

Lesson:

- C is very picky
$>$ Getting one character wrong will often make your program work incorrectly!
- You'll have to get very good at finding these stupid little errors
$>$ Practice practice practice!

28. June, 2000

CSE 142 Summer 2000 - Isaac Kunen F-22

Complex Conditionals

- We'd like more expressive power
$>$ If I have at least $\$ 15$ or you have at least $\$ 15$, then we can go to the movies.
>If you're in Guggenheim 224 and it's 12:00 on Friday, then you're in CSE 142.
$>$ If you're in CSE 142 and your name is Isaac, then you're the lecturer.

28. June, 2000

CSE 142 Summer 2000 - Isaac Kunen

Truth Tables for $\& \&,| |$

- A truth table lists all possible combinations of values and their result

P	Q	$\mathrm{P} \& \& \mathrm{Q}$	$\mathrm{P} \\| \mathrm{Q}$
T	T	T	T
T	F	F	T
F	T	F	T
F	F	F	F

Complex Conditionals in C

```
if ((myMoney > 15.0) ||
```

 (yourMoney > 15.0)) \{...\}
 if ((location $==224) \quad \& \&$
(time $==12$)) $\{\ldots\}$
if (! (initial == 'I')) \{...\}
28. June, 2000 CSE 142 Summer 2000 - Isaac Kunen

Orisn't Always Like in English!

- In English if "this fruit is an apple or it is an orange", then it cannot be both apple and orange
- In C,
(fruit == 'A') || (fruit == \mathbf{O}^{\prime})
is true if either half is true!

28. June, 2000 CSE 142 Summer 2000 - Isaac Kunen F-28

Tuth Table for!

- \&\& and || are binary operators
- ! is a unary operator that inverts the value

28. June, 2000

CSE 142 Summer 2000 - Isaac Kunen

DeMorgans' Laws

- Convert between and expressions and or expressions
- Example:

$$
\begin{aligned}
& \qquad\left((\text { age }<25) \& \&\left(\text { sex }==\mathbf{M}^{\prime}\right)\right) \\
& \text { is equivalent to } \\
& \quad\left((\text { age }>=25)\left|\mid\left(\text { sex }!=\mathbf{M}^{\prime}\right)\right)\right.
\end{aligned} \text { 28. June, 2000 } \quad \text { CSE } 142 \text { Summer } 2000 \text { - Isaac Kunen } \quad l \begin{aligned}
& \text { F-31 }
\end{aligned}
$$

DeMorgan's Laws

- DeMorgan's Laws tell us some legal conversions:
$!(P \& \& Q) \longleftrightarrow(!P| |!Q)$
$!(P| | Q) \longleftrightarrow(!P \& \&!Q)$

28. June, 2000

CSE 142 Summer 2000 - Isaac Kunen
F-32

Ese: The Other Half of If

- else lets you do something if the condition was false
if (balance >= withdrawal) \{
balance = balance - withdrawal; \}
else \{ printf ("Insufficient Funds!\n"); \}

28. June, 2000 CSE 142 Summer 2000 - Isaac Kunen

F-34

Nested ifs

\#define BILL_SIZE 20
if (balance < withdrawal) \{
printf("Insufficient funds! $\backslash n$ ");
\} else \{
if (withdrawal < BILL_SIZE)
printf ("Try a larger amount. \n");
else balance = balance - withdrawal; \}
28. June, 2000

CSE 142 Summer 2000 - Isaac Kunen
F-36

Tax Example			
- Print the tax based on income:			
	income	tax	
	< 15,000	0\%	
	>= 15,000, < 30,000	18\%	
	$>=30,000,<50,000$	22\%	
	>= 50,000, < 100,000	28\%	
	$>=100,000$	31\%	
28.June, 2000	CSE 112 Summer 2000 - Isaac Kunen		${ }^{\text {F.37 }}$

Simple Solution

```
if ( income < 15000 ).{, ( "No tax.");
if (income >= 15000 &&& i
printf("18%% tax.");
if (income >= 30000 && income < 50000 ) {
    printf("22%% tax.");
if (income >= 50000 &&& income < 100000 ) {
    printf("28%% tax.");
if (income >=100000) {
}
28. June, 2000
CSE 142 Summer 2000 - Isaac Kunen

\section*{Cascaded ifs}


\section*{Another Type of Conditional!}
- The Switch Statement:

\section*{Longwinded if}
```

/* How many days in a month? */
if (month == 1) { /* Jan */
days = 31;
} else if (month == 2) { /* Feb */
days = 28;
} else if (month == 3) { /* Mar */
days = 31;
} else if (month == 4) /* Apr */
days = 30;
... /* need 12 of these */

```
28. June, 2000
    CSE 142 Summer 2000 - Isaac Kunen

\section*{Even Better Code:}
```

switch (month) {
case 2: /* February */
days = 28 ;
break ;
creak ; /* September */
case 4: /* April
case 6: /* June */
case 6: /* June */ */
days = 30 ;
break ;
default: /* All the rest have 31 */
}
28. June, 2000 CSE 142 Summer 2000 - Isaac Kunen

switch

```
switch (control expression){
    case-list-1
            statements 1
            break;
        case-list-2
            statements 2
            break;
    ...
    default:
        statements
}
28. June, 2000 CSE 142 Summer 2000 - Isaac Kunen F-44
```


switch Pitfalls

- The type of the control expression must be int or char
- The cases must be constant
- The switch statement falls through

Falling Through

```
switch (month) {
            case 2:
            days = 28 ; /* break missing */
            case 9:
            case 4:
            case 6:
            case 11:
                days = 30; /* break missing */
            default:
            days = 31 ;
}
88. June, 2000

\section*{Conditionals Summary}
- if lets the execution branch
\(>\) complex conditions are put together with \&\&, ||, and!
- else does something if the condition was false
- switch can be used in some situations to do a multiple branch
\(>\) control-expression must be int or char
\(>\) cases must be constants
28. June, 2000

CSE 142 Summer 2000 - Isaac Kunen```

