Announcements!

- Homework Oa due today!
>Email it to your TA
$>$ No Word documents
- Homework Ob due on Sunday/Monday
$>$ Electronic turnin by 10pm Sunday
>Paper turnin during lecture Monday

CSE 142

Computer Programming I

Arithmetic Expressions

23. June 2000

Announcements!

- We need a note taker who is enrolled in section AE
$>$ Very easy—just need to copy the notes you already take
$>$ See Isaac about this if you're interested

Outine for Today

- Integer expressions
- Expressions with doubles
- Mixing types

What is an Expression?

- Something that has a value
$>$ A variable: length
>A constant: 1067
$>$ These can be put together with operators to make new expressions

23. June, 2000

CSE 142 Summer 2000 - Isaac Kunen

Order of Operations

> Do ()'s first

- Then do unary - (negation)
- Then do "multiplicative" ops: * / \%
-Then do "additive" ops: + -
- What is the value of

$$
4+16 / 4
$$

Unary and Binary Operators

- Unary operators take one operand -1067
- Binary operators take two operands

3 * 17
12-15

- Most C operands are unary or binary

23. June, 2000

CSE 142 Summer 2000 - Isaac Kunen C-8

Order of Operations

- Sometimes called Operator Precedence
- A rule that says what operators get executed first
- Disambiguates expressions
$>$ What is the value of
$4+16 / 4$

23. June, 2000

CSE 142 Summer 2000 - Isaac Kunen

Use Parenthesis!

- C has about 50 operators, and roughly 15 precedence levels
- (almost) nobody remembers them all $>$ Isaac doesn't
>Your TAs don't
>Dennis Ritchie probably does
- Parenthesis force the order of operations, but also make code clearer, so use extra ones!

23. June, $2000 \quad$ CSE 142 Summer 2000 - Isaac Kunen \quad C-13 -13

Use Parenthesis

- Which is clearer?
$a * b+c * d+e * f$
or
(a * b) + (c * d) + (e * f)
- Both mean the same thing

23. June, 2000

CSE 142 Summer 2000 - Isaac Kunen

Integer Division

- Remember-Integers cannot hold fractional numbers!
- If you do an integer division you get the integer part of the division
$>16 / 4 \rightarrow 4$
$>11 / 4 \rightarrow 2$
$>17 / 4 \rightarrow$???
$>199 / 200 \rightarrow$???

23. June, 2000

CSE 142 Summer 2000 - Isaac Kunen C-16

Doubles

- We use doubles to represent floating point values
- All of the things we just learned about precedence and associativity still apply
- Most operators still work

23. June, 2000

CSE 142 Summer 2000 - Isaac Kunen

The Modulus Operator

- When we do an integer division we only get the integer part of the result
- The \% operator gets the remainder
$>16 \% 4 \rightarrow 0$
$>11 \% 4 \rightarrow 3$
>17 \% $4 \rightarrow$???
>199 \% $200 \rightarrow$???

Foating Point Division

- Floating point division does not drop the remainder
$>16 / 4 \rightarrow 4.0$
$>11 / 4 \rightarrow 2.75$
$>17 / 4 \rightarrow 4.25$
$>199 / 200 \rightarrow 0.995$
- Cannot use the modulus operator
$>11 \% 4$ is an error!

23. June, 2000

CSE 142 Summer 2000 - Isaac Kunen

Why Use ints?

- Doubles seem to be better than ints...
$>$ They can store fractional numbers
$>$ They can store larger numbers
- Doubles may store numbers imprecisely
$>3.0 * 15.0 *(1.0 / 3.0)$ might be 14.999999
- Rule: If we want an integer, use an int

23. June, 2000

CSE 142 Summer 2000 - Isaac Kunen
C-20

Assigning Ints to Doubles

- What happens when we try to put an int into a variable of type double?
double value;
...
value = 6;
-What's in value?

23. June, 2000

CSE 142 Summer 2000 - Isaac Kunen \qquad

Assigning Doubles To Ints

- What happens when we try to put a double into a variable of type int?
int value;
...
value = 3.14159;

What's in value?
23. June, 2000

CSE 142 Summer 2000 - Isaac Kunen C-22

Mixing Doubles and Ints

- What happens if we have doubles and ints in the same expression?
- Always promote if there's a problem
double foo;
foo $=3.0+(3 / 1.5)$;
-What value is in foo?

23. June, 2000

CSE 142 Summer 2000 - Isaac Kunen

Mixing Doubles and Ints

- When we mix integers and doubles, the integers are promoted at the last possible moment!
- Examples
>4.0 * $(3 / 4.0)=$
$>4.0^{*}(3 / 4)=$

An Example

- What's wrong here:
int length, area;
double width;
width = area / length;

Explicit Conversions

- We need to explicitly convert the types
- This conversion is called a cast
- Format:
(type) expression
- Examples:
(double) myage;
(int) area;

23. June, 2000

CSE 142 Summer 2000 - Isaac Kunen C-27

The Example Revisited

- We fix the example by using a cast:
int length, area;
double width;
width = ((double) area) / ((double) length);

Could we use less casts?
23. June, 2000

CSE 142 Summer 2000 - Isaac Kunen C-28

```
int foo, answer;
double bar;
foo = 2;
bar = 4.5;
answer =
    (foo*foo + bar*2) + 3/(double)foo;

\section*{Types Matter in C}
- The result of computation can differ depending on the type
- Always know what types you have
- There are cases in which you MUST use the right types!

\section*{Important Lessons}
- Write clearly
- Break up complicated expressions
- Use parenthesis to make execution happen the way you want and to make things easier to read
- Use explicit casts when you need them
- Be aware of types```

