
N

T-1

CSE 142
Computer Programming I

Strings

© 2000 UW CSE T-2

Overview

Concepts this lecture
String constants
Null-terminated array representation
String library <string.h>
String initializers
Arrays of strings

T-3

Chapter 9
Read Sections 9.1, 9.2, and 9.4:

9.1: String Basics

Table 9.1 for summary of common functions

9.2: String Assignment

9.3: String Concatenation

9.4: String Comparison
T-4

Character Data in Programs
Names, messages, labels, headings, etc.

All of these are common in computer
applications

All involve characters: usually multiple
characters

So far, our ability to handle these things in
C is very limited

T-5

Characters and Strings

Character constants (literals): single quotes

’a’, ’A’, ’0’, ’1’, ’\n’, ’ ’, ’B’, ’i’, ’l’ , ’\0’

null character

String constants (literals): double quotes

"Bill is very rich"

"The answer is %.2f. \n" T-6

String Representation

Strings are stored in char arrays
Programming convention: a null character ’\0’

is stored at the end

string representation

"sample"
s a m p l e \0

N

T-7

’\0’ in Strings

’\0’ is not included in strings automatically

’\0’ is included in string constants
automatically

Programmer must take pains to be sure ’\0’
is present elsewhere when needed

s a m p l e \0
T-8

Leaving Room for ’\0’
Character arrays holding strings must

have room for ’\0’ following the actual
data

The empty string "" occupies 1 char
Character and string constants are not

the same:
’x’ and "x" are different. How?

s a m p l e \0

T-9

String Operations
Common needed operations:

Copy (assignment)
Compare
Find length
Concatenate (combine strings)
I/O

Unfortunately...

s a m p l e \0 T-10

What You Can’t Do
Strings are arrays

They have the limitations of arrays

Can’t assign one string to another with =

Can’t compare strings with ==, <=

But there are library functions to help do
such things s a m p l e \0

T-11

String Library: <string.h>

Standard C includes a library of string
functions
use #include <string.h>

Library functions:
Require proper null-terminated ('\0')

strings as arguments
Produce null-terminated strings as

results (usually)
s a m p l e \0 T-12

String Length: strlen

strlen returns the length of its string argument
Does not count the null '\0' at the end

Examples:
The length of "A" is 1
The length of "" is 0

k = strlen("null-terminated string");

stores 22 in k

N

T-13

/*
* return the length of string s, i.e.,
* number of characters before terminating ’\0’,
* or equivalently, index of first ’\0’.
*/
int strlen(char s[])
{

int n = 0;
while (s[n] != ’\0’)

n = n + 1 ;
return n;

}

A strlen implementation

T-14

String Assignment: strcpy

strcpy(dest, source);

Copies characters from source to dest
Copies up to, and including the first ’\0’

found
Be sure that dest is large enough to

hold the result!

T-15

String Assignment:
Examples

#include <string.h>
...
char medium[21] ;

char big[1000] ;

char small[5] ;

strcpy(medium, "Four score and seven") ;

medium: Four score and seven\0 T-16

String Assignment:
Examples
char medium[21];
char big[1000];
char small[5];

strcpy(big, medium);
strcpy(big, "Bob");

big: Four score and seven\0?????...

big: Bob\0 score and seven\0?????...

T-17

String Assignment Dangers

char medium[21];

char big[1000] ;

char small[5] ;

strcpy(small, big) ;

strcpy(small, medium) ; /* looks like trouble... */

small: Bob\0?

small: Four score and seven\0
T-18

A strcpy implementation
/* copy source string into dest, stopping with ’\0’ */
void strcpy(char dest[], char source[])
{

int i = 0;
while (source[i] != ’\0’) {

dest[i] = source[i] ;
i ++;

}
dest[i] = ’\0’ ;

}

N

T-19

Appending and Concatenation

To append means to place one string
directly after another

"chop" appended to "lamb" should result
in "lambchop"

Also referred to as concatenation

T-20

String Concatenation: strcat
<string.h> function:

strcat(dest, source);

Appends characters from source to dest
Copy is stored starting at first ’\0’ in

dest
Copies up to, and including the first ’\0’

in source
Be sure that dest is large enough!

T-21

Using strcat (1)
#include <string.h>
...
char str1[5] , str2[5] , str3[11];

strcpy(str1, "lamb");
strcpy(str2, "chop");

str1 ? ? ? ? ?

str3 ? ? ? ? ? ? ? ? ? ? ?

str2 ? ? ? ? ?c h o p \0

l a m b \0

T-22

Using strcat (2)

strcpy(str3, str1);
strcat(str3, str2);

str1 l a m b \0

str3 ? ? ? ? ? ? ? ? ? ? ?

str2 c h o p \0

l a m b \0c h o p \0

T-23

String Comparison: strcmp

strcmp(s1, s2);

Compares s1 to s2 and returns an int
describing the comparison

Negative if s1 is less than s2
Zero if s1 equals s2
Positive if s1 is greater than s2

T-24

Comparing Strings

strcmp compares corresponding
characters until it finds a mismatch.

"lamb" is less than "wolf"

"lamb" is less than "lamp"

"lamb" is less than "lambchop"

N

T-25

Using strcmp (1)

Don’t treat the result of strcmp as a
Boolean!

Test the result as an integer

if (strcmp(s1,s2) == 0)
printf("same\n");

T-26

Using strcmp (2)

If you treat the result of strcmp as a
Boolean, it probably won’t do what you
want

if (strcmp(s1,s2))
printf("yikes!");

prints yikes if s1 and s2 are different!

T-27

String I/O
scanf and printf can read and write C

strings
Format code is %s

printf assumes '\0' is present

scanf will automatically insert ’\0’ at the
end
Be sure the array has room for it!

T-28

Spot the Security Hole

#define MAX_INPUT 200
char buffer [MAX_INPUT];
…
scanf("%s", buffer);

T-29

Many Functions in <string.h>
strcat, strncat concatenation

strcmp, strncmp comparison

strtod, strtol, strtoul conversion

Lots of others: check your favorite reference.

Related useful functions in <ctype.h>
operations on a single char:
convert case (to upper or lower)
check category (is char a number, etc.)
many others T-30

Using Libraries of Functions
To use strings effectively in C, use functions
from string.h

Using libraries is very typical of C programming

ANSI C standard libraries such as stdio.h,
string.h, ctype.h, math.h

Application-specific libraries: (thousands of
them exist)

You can’t be an effective programmer without
being able to quickly master new libraries of
functions

N

T-31

Bonus: String Initializers
char pet[5] = { ’l’, ’a’, ’m’, ’b’, ’\0’ } ;

char pet[5] ;
pet[0] = ’l’ ; pet[1] = ’a’ ; pet[2] = ’m’ ;
pet[3] = ’b’ ; pet[4] = ’\0’ ;

char pet[5] = "lamb" ;

But not:
char pet[5];
pet = "lamb" ; /* No array assignment in C */
Remember that initializers are not assignment
statements!

all equivalent

T-32

Bonus: Arrays of Strings
char month[12][10] = {

"January",

"February",

...

"September", /* longest month: 9 letters */

...

"December" } ;

...

printf ("%s is hot \n", month[7]); /* August */

T-33

Strings Summary

Definition: Null-terminated array of char

Strings are not fully a type of C
They share most limitations of arrays
scanf/printf: %s
<string.h> library functions

Assignment: strcpy
Length: strlen
strcat and many others

Major Pitfall: overrunning available space

