
L-1

L-1

Functions and Design

© 2000 UW CSE

CSE 142
Computer Programming I

L-2

Overview
Design process
Functional decomposition
Top down vs. bottom up
Graphics primitives

L-3

Drawing a House

L-4

Drawing a House

L-5

Drawing a House

L-6

Drawing a (Similar) House

L-2

L-7

Draw House (Pseudo-code)
draw_house (color, ll_x, ll_y, num_windows)

draw body as a colored rectangle
draw roof as a colored triangle
if num_windows is one

draw door
draw window

if num_windows is two
draw door
draw window
draw window L-8

Functional Decomposition
Draw House

Draw Body Draw Roof Draw Door Draw Window

Rectangle Triangle

Rectangle Circle Rectangle Line

This is a "calling tree" or "static call graph."
Each function is shown, with an arrow down to
each function called.

L-9

Functional Decomposition
Draw House

Draw Roof Draw Body Draw Door Draw Window

Triangle Rectangle Circle Line

Each function shown only once (preferred)

L-10

Analysis to Design to
Programming

Analyze the problem
Then design a "big-picture" solution

A functional decomposition shows how the
pieces fit together

Then design individual functions
May depend on low-level ("primitive")

functions available
Final programming may be very detailed

L-11

Top Down vs. Bottom Up

Sometimes designers start from the big picture

Gradually work down to smaller pieces and
then to fine details

Called the “top down approach”

Sometimes people start with small pieces

Figure out how they can fit together pieces to
solve ever larger and larger problems

Called the “bottom up approach”
L-12

Top Down or Bottom Up?

Which approach are we following with
DrawHouse?

Answer: Generally, top down. But we
have to look ahead and know what low
level functions will be available
Eventually, there will be graphics
programming to do. Fortunately, most
systems supply a library of graphics
“primitives”

L-3

L-13

Graphics Primitive
Typical functions: clearscreen, draw circle,
rectangle, line, ellipse, etc.
Typical parameters: location, color, fill, etc.

Requires a coordinate system

(0, 0)

X

Y (a,b).
L-14

Typical ’rectangle’ and ’line’

(x1, y1)

(x2, y2)

(x1, y1)

(x2, y2)

void
rectangle (int color, int x1, int y1, int x2, int y2);

void line (int x1, int y1, int x2, int y2);

L-15

Big Picture Again
Draw House

Draw Roof Draw Body Draw Door Draw Window

Triangle Rectangle Circle Line

Fill in the pieces one at a time

L-16WIN_W

WIN_H
MID_Y

Window Constants

MID_X

Our analysis of how to describe a window

L-17

Map Analysis to C Code
Identify and declare constants
Choose parameters
Utilize primitives
Get the picky details right, too!
void draw_window(int x, int y)

/* (x,y) is the lower left corner of the window */
{

rectangle(WHITE, x, y, x + WIN_W, y + WIN_H);
line(x+MID_X, y, x + MID_X, y + WIN_H);
line(x,y + MID_Y, x + WIN_W, y + MID_Y);

}
L-18

Keep Filling in Pieces
Draw House

Draw Roof Draw Body Draw Door Draw Window

Triangle Rectangle Circle Line

Analyze and code remaining functions
Does the order matter?

Coding could be bottom-up, even if design
was top-down, and vice-versa
If the design is good, the functions can be
implemented independently

L-4

L-19

Draw House (Gory Detail I)

void draw_house (int color, int ll_x,
int ll_y, int windows)

{
int roof_ll_x, roof_ll_y ;

/* Draw Body */
draw_body (color, ll_x, ll_y) ;

/* Draw Roof */
roof_ll_x = ll_x - OVERHANG ;
roof_ll_y = ll_y + BODY_HEIGHT ;
draw_roof (color, roof_ll_x , roof_ll_y) ; L-20

Draw House (Gory Detail II)
if (windows == 1)
{

draw_door (ll_x + DOOR_OFFSET_1, ll_y) ;
draw_window (ll_x + WINDOW_OFFSET_1,

ll_y + WINDOW_RAISE) ;
}
else if (windows == 2)
{

draw_door (ll_x + DOOR_OFFSET_2, ll_y) ;
draw_window (ll_x + WINDOW_OFFSET_2A,

ll_y + WINDOW_RAISE) ;
draw_window (ll_x + WINDOW_OFFSET_2B,

ll_y + WINDOW_RAISE) ;
}

}

L-21

Draw House (gory details)

void draw_house (int color, int ll_x,
int ll_y, int windows)

{
int roof_ll_x, roof_ll_y ;

/* Draw Body */
draw_body (color, ll_x, ll_y) ;

/* Draw Roof */
roof_ll_x = ll_x - OVERHANG ;
roof_ll_y = ll_y + BODY_HEIGHT ;
draw_roof (color, roof_ll_x , roof_ll_y) ;

/* Draw Door and Window(s) */
if (windows == 1)
{

draw_door (ll_x + DOOR_OFFSET_1, ll_y) ;
draw_window (ll_x + WINDOW_OFFSET_1,

ll_y + WINDOW_RAISE) ;
}

else if (windows == 2)
{

draw_door (ll_x + DOOR_OFFSET_2, ll_y) ;
draw_window (ll_x + WINDOW_OFFSET_2A,

ll_y + WINDOW_RAISE) ;
draw_window (ll_x + WINDOW_OFFSET_2B,

ll_y + WINDOW_RAISE) ;
}

}

L-22

Next Step: A Neighborhood

We could write 6 different functions...

Smarter - call 1 function 6 times...

L-23

Summary of Functional
Decomposition

Look for common elements (similarities)

Parameterize for special features
(differences)

Determine which functions will use
others

Draw a graph to show their relationships

