
J-1

K-1

CSE 142
Computer Programming I

Event Driven Programming

© 2000 UW CSE K-2

Event-Driven Programming
Modern programs tend to be "event-driven"

Program starts, sets itself up.
Program enters a loop, waiting for some event or

command to happen:
mouse click, key click, timer, menu selection,

etc.
Program performs operation ("handles" the event

or command)
Program goes back to its wait loop

UW’s GP142 graphics package follows this kind of
model

K-3

Simple Command Interpreter

Repeatedly read in "commands" and handle them.

Input (symbolized by single characters)

a -- execute command A by calling process_A()

b -- execute command B by calling process_B()

q -- quit

Pseudocode for main loop:

get next command

if a, execute command A

if b, execute command B

if q, signal quit
K-4

Command Interpreter
Loop Control Schema

repeat until quit signal

use variable “done” to indicate when done

set done to false

while not done {

body statements

if quit command, set done to true

}

K-5

int main(void) {
char command;
int done;

done = FALSE;
while (! done){ /* Input command from user */

command = ReadCommand();
switch (command){
case ’A’:
case ’a’:

process_A(); /* Execute command A */
break;

case ’B’:
case ’b’:

process_B(); /* Execute command B */
break;

case ’Q’:
case ’q’:

done = TRUE; /* quit */
break;

default:
printf("Unrecognized command\n");

}
}
return 0;

}

Command
Interpreter
main ()

