
I-1

I-1

CSE 142
Computer Programming I

Complex Conditions

© 2000 UW CSE I-2

Overview

Concepts this lecture
Complex conditions
Boolean operators
Negating a condition
Truth tables
DeMorgan’s laws

I-3

Complex Conditionals
if I have at least $15 or you have at

least $15, then we can go to the
movies

if the temperature is below 32
degrees and it’s raining, then it’s
snowing

if it’s not the case that it’s Saturday
or Sunday, then it’s a work day I-4

Boolean Operators in C
Complex conditionals often involve words like
AND, OR, and NOT, and sometimes TRUE or
FALSE

As we know, TRUE and FALSE are not built-in
concepts in C. You can define symbols:
#define TRUE 1
#define FALSE 0

The Boolean operators AND, OR, and NOT have
these symbols in C:

&& || !
and or not

I-5

Complex Conditionals in C
if I have at least $15 or you have at least $15, then
we can go to the movies:

if (myMoney>=15.0 || yourMoney>=15.0)
canGoToMovies = TRUE;

if the temperature is below 32 degrees and it’s
raining, then it’s snowing:

if (temperature<32.0 && raining) snowing = TRUE;

I-6

An Example with !
if it’s not the case that it’s Saturday or Sunday,
then it’s a work day:

weekday = FALSE;
if (!(today==6 || today==7))

weekday = TRUE;
if (weekday) mustWork = TRUE;

I-2

I-7

Conditional Expressions
Review: Like arithmetic expressions,

conditional expressions have a value:
TRUE (non-zero) or FALSE (zero)

values are actually int
When using relational (<, ==, etc.) and

Boolean (&&, ||, !) operators: TRUE is 1;
FALSE is 0

Can be used in int expressions:
m = (z >= 0.0) ;

I-8

if (age < 25) {
if (sex == ’M’) {

insurance_rate = insurance_rate * 2 ;
}

}

Nested if vs. AND (&&)

if ((age < 25) && (sex == ’M’)) {
insurance_rate = insurance_rate * 2 ;

}

I-9

Precedence of &&, ||, !, >, etc.
High (Evaluate First) Low (Evaluate Last)

! Unary - * / % - + < > <= >= == != && ||

a = 2;
b = 4;
z = (a + 3 >= 5 && !(b < 5)) || a * b + b != 7 ;

I-10

z = (a + 3 >= 5 && ! 1) || a * b + b != 7
z = (a + 3 >= 5 && !(b < 5)) || a * b + b != 7

z = (5 >= 5 && 0) || a * b + b != 7

z = (a + 3 >= 5 && 0) || a * b + b != 7

z = 1
z = 0 || 1

1

z = 0 || a * b + b != 7
z = (1 && 0) || a * b + b != 7

z = 0 || 12 != 7
z = 0 || 8 + b != 7

a = 2

b = 4

I-11

Negating Conditions
Suppose we want a while loop to

terminate as soon as either x is 17 or x
is 42

Which is it?
while (x!=17 || x!=42) …
while (x!=17 && x!=42) …
either way? something else?

Truth tables and DeMorgan’s laws give us
tools for answering such questions I-12

A "truth table" lists all possible combinations of
values, and the result of each combination

P Q P && Q P || Q

T T

T F

F T

F F

P and Q stand for any conditional expressions

Truth Tables for && and ||

T

F

F

F

T

T

T

F

I-3

I-13

Truth Table for NOT (!)

P !P

T F

F T

I-14

int high_risk ;

high_risk = (age < 25 && sex == ’M’) ;
if (high_risk) { /* Do nothing */
} else {

printf ("Cheap rates. \n") ;
}

NOT (!) Example

P !P

T F

F T
if (! high_risk) {

printf ("Cheap rates. \n") ;
}

I-15

Equivalence of Complex Expressions

if (! (age < 25 && sex == ’M’))

printf ("Cheap rates. \n") ;

is equivalent to

if (age >= 25 || sex != ’M’))

printf ("Cheap rates. \n") ;

Or is it?

I-16

DeMorgan’s Laws
DeMorgan’s laws help determine when two
complex conditions are equivalent

They state:

! (P && Q) is equivalent to (!P || !Q)

! (P || Q) is equivalent to (!P && !Q)

This applies for any Boolean expressions P
and Q, which might themselves be complex
expressions

I-17

P Q (P&&Q) !(P&&Q) !P !Q (! P || !Q)
T T
T F
F T
F F

Proof of DeMorgan
Is it really true that !(P&&Q) == (!P || !Q) ?

T
F
F
F

F
T
T
T

F
F
T
T

F
T
F
T

F
T
T
T

Exercise: Prove the other law
I-18

P Q (P&&Q) !(P&&Q) !P !Q (! P || !Q)
T T
T F
F T
F F

Proof of DeMorgan
Is it really true that !(P&&Q) == (!P || !Q) ?

T
F
F
F

F
T
T
T

F
F
T
T

F
T
F
T

F
T
T
T

Exercise: Prove the other law

I-4

I-19

Solution To a Previous Question
We wanted a while loop to terminate as soon as

either x is 17 or x is 42. I.e., loop should
terminate if (x==17 || x==42)

So the loop condition is
while (! (x==17 || x==42) …

Using DeMorgan’s laws, we can rewrite as
while (x != 17 && x != 42) …

A truth table would show that
while (x != 17 || x != 42)

is wrong!
I-20

Summary
Complex conditions are useful in while loops, for

loops, if statements, and even in assignment
statements

Operators &&, ||, and ! are part of C

TRUE and FALSE can be #defined

Truth tables and DeMorgan’s laws help evaluate
complex expressions

