
H1-1

H1-1

CSE 142
Computer Programming I

Iteration

© 2000 UW CSE H1-2

Overview

Concepts this lecture
Iteration - repetitive execution
Loops and nested loops
while statements
for statements

H1-3

Chapter 5

Read Sections 5.1-5.6, 5.10

5.1 Introduction

5.2-5.3 While statement

5.4 For statement

5.5-5.6 Loop design

5.7 Nested Loops

5.11 Common errors
H1-4

An Old Friend:
Fahrenheit to Celsius

#include <stdio.h>

int main(void)
{

double fahrenheit, celsius;
printf("Enter a Fahrenheit temperature: ");
scanf("%lf", &fahrenheit);
celsius = (fahrenheit - 32.0) * 5.0 / 9.0;
printf("That equals %f degrees Celsius.",

celsius);
return 0;

}

H1-5

What’s “Wrong” with
Fahrenheit/Celsius Program?
User has to rerun the program for every
new temperature

Wouldn’t it be nice if the program
could process repeated requests?

Program ends immediately if user types a
bad input

Wouldn’t it be nice the program
politely asked the user again (and
again, etc. if necessary)? H1-6

One More Type of Control Flow

Sometimes we want to repeat a block of code.
This is called a loop.

H1-2

H1-7

Loops

A “loop” is a repeated (“iterated”) sequence of
statements
Like conditionals, loops (iteration) give us a huge
increase in the power of our programs
Alert: loops are harder to master than if statements

Even experienced programmers often make
subtle errors when writing loops

H1-8

Motivating Loops
Problem: add 4 numbers entered at the keyboard.

int sum;
int x1, x2, x3, x4;

printf("Enter 4 numbers: ");
scanf("%d%d%d%d", &x1, &x2, &x3, &x4);
sum = x1 + x2 + x3 + x4;

This works perfectly!
But... what if we had 14 numbers? or 40? or 4000?

H1-9

Finding Repeated Code
The key to using loops to solve a problem is to
discover steps that can be repeated

Our first algorithm for adding four numbers had no
repeated statements at all

But it does have some repetition buried in it.

Let’s rework the algorithm to make the repetition
more explicit

H1-10

Add 4 Numbers, Repetitively
int sum, x;
sum = 0;
printf("Enter 4 numbers: ");

scanf("%d", &x);
sum = sum + x;

scanf("%d", &x);
sum = sum + x;

scanf("%d", &x);
sum = sum + x;

scanf("%d", &x);
sum = sum + x;

H1-11

Loop to Add 4 Numbers

int sum, x;
sum = 0;
printf("Enter 4 numbers:");

scanf("%d", &x);
sum = sum + x;

scanf("%d", &x);
sum = sum + x;

scanf("%d", &x);
sum = sum + x;

scanf("%d", &x);
sum = sum + x;

int sum, x;
int count;

sum = 0;
printf("Enter 4 numbers:");

count = 1;
while (count <= 4) {

scanf("%d", &x);
sum = sum + x;
count = count + 1;

} H1-12

while (condition) {

statement1;

statement2;

...

}

while Statement Syntax

Loop body:
Any statement,
or a compound
statement

Loop
condition

H1-3

H1-13

More General Loop to Add Numbers

int sum, x, count;
int number_inputs; /* Number of inputs */

sum = 0;
printf("How many numbers? ");
scanf("%d", &number_inputs);
printf("Enter %d numbers: ", number_inputs);
count = 1;
while (count <= number_inputs) {

scanf("%d", &x);
sum = sum + x;
count = count + 1;

}
H1-14

Compute 7!
What is 1 * 2 * 3 * 4 * 5 * 6 * 7? (“seven factorial”)

x = 1 * 2 * 3 * 4 * 5 * 6 * 7;
printf ("%d", x) ;

H1-15

Compute 7!
What is 1 * 2 * 3 * 4 * 5 * 6 * 7? (“seven factorial”)

x = 1 * 2 * 3 * 4 * 5 * 6 * 7;
printf ("%d", x) ;

Bite size pieces: More Regular: As a loop:

x = 1; x = 1; i = 2; x = 1;

x = x * 2; x = x * i; i = i + 1; i = 2;

x = x * 3; x = x * i; i = i + 1; while (i <= 7) {

x = x * 4; x = x * i; i = i + 1; x = x * i;

x = x * 5; x = x * i; i = i + 1; i = i + 1;

x = x * 6; x = x * i; i = i + 1; }

x = x * 7; x = x * i; i = i + 1;

H1-16

i <= 7 ? x = x * i ;

i = i + 1 ;

yes

no

while Loop Control Flow

x = 1 ;
i = 2 ;

H1-17

/* What is 1 * 2 * 3 * ...*7 */

x = 1 ; /* A */
i = 2 ; /* B */
while (i <= 7) { /* C */

x = x * i ; /* D */
i = i + 1 ; /* E */

} /* F */
printf ("%d", x) ; /* G */

Tracing the Loop
line i x i≤7?

A ? 1
B 2 1
C 2 1 T
D 2 2
E 3 2
C 3 2 T
......................
C 6 120 T
D 6 720
E 7 720
C 7 720 T
D 7 5040
E 8 5040
C 8 5040 F
G (Print 5040) H1-18

Double Your Money
/* Suppose your $1,000 is earning interest
at 5% per year. How many years until you
double your money? */

my_money = 1000.0;
n = 0;
while (my_money < 2000.0) {

my_money = my_money *1.05;
n = n + 1;

}
printf("My money will double in %d years.", n);

H1-4

H1-19

printf ("Enter values to average, end with -1.0 \n") ;
sum = 0.0 ;
count = 0 ; sentinel
scanf ("%lf", &next) ;
while (next != -1.0) {

sum = sum + next ;
count = count + 1;
scanf ("%lf", &next) ;

}
if (count > 0)

printf("The average is %f. \n",
sum / (double) count);

Average Inputs

H1-20

Printing a 2-D Figure
How would you print the following diagram?

 ∗ ∗ ∗ ∗ ∗
 ∗ ∗ ∗ ∗ ∗
 ∗ ∗ ∗ ∗ ∗

repeat 3 times

print a row of 5 stars
repeat 5 times

print ∗

It seems as if a loop within a loop is needed.

H1-21

#define ROWS 3

#define COLS 5
…

row = 1;

while (row <= ROWS) {

/* print a row of 5 *’s */

…

row = row + 1;

}

Nested Loop

H1-22

row = 1;
while (row <= ROWS) {

/* print a row of 5 *’s */

col = 1;

while (col <= COLS) {

printf("*");
col = col + 1;

}

printf("\n");

row = row + 1;

}

inner
loop:
print
one
row

outer
loop:
print 3
rows

Nested Loop

H1-23

Trace
row:

col:

output:

1

1 2 34 5

2 3 4

6 1 2 34 5 6 1 2 34 5 6

* * * * *
* * * * *
* * * * *

row = 1;
while (row <= ROWS) {

/* print a row of 5 *’s */
col = 1;
while (col <= COLS) {

printf("*");
col = col + 1;

}
printf("\n");
row = row + 1;

}

H1-24

Print a Multiplication Table
1 2 3

1 1 2 3

2 2 4 6

3 3 6 9

4 4 8 12

1 2 3

1 1 * 1 1 * 2 1 * 3

2 2 * 1 2 * 2 2 * 3

3 3 * 1 3 * 2 3 * 3

4 4 * 1 4 * 2 4 * 3

H1-5

H1-25

1 2 3

2 4 6

3 6 9

4 8 12

1 2 3

1

2

3

4

Print Row 2

col = 1;
while (col <= 3) {

printf("%4d", 2 * col);
col = col + 1;

}
printf("\n");

row number
H1-26

row = 1;
while (row <= 4) {

col = 1;
while (col <= 3) {

printf("%4d", row * col);
col = col + 1;

}
printf("\n");
row = row + 1;

}

Nested Loops Print 4 rows

Print one row

H1-27

row col
1 1 print 1

2 print 2
3 print 3

print \n
2 1 print 2

2 print 4
3 print 6

print \n

Loop Trace
row col
3 1 print 3

2 print 6
3 print 9

print \n
4 1 print 4

2 print 8
3 print 12

print \n

H1-28

Notes About Loop Conditions

They offer all the same possibilities as
conditions in if-statements
Can use &&, ||, !

Condition is reevaluated each time through
the loop

A common loop condition: checking the
number of times through the loop

H1-29

Counting Loops

A common loop condition: checking the
number of times through the loop

Requires keeping a "counter"

This pattern occurs so often there is a
separate statement type based on it: the
for-statement

H1-30

A for Loop

/* What is 1 * 2 * 3 * ... * n ? */

x = 1 ;
i = 2 ;
while (i <= n) {

x = x * i ;
i = i+1;

}
printf ("%d", x) ;

x = 1 ;
for (i = 2 ; i <= n ; i = i+1) {

x = x * i ;
}
printf ("%d", x) ;

H1-6

H1-31

for Statement Syntax
for (initialization;

condition;

update expression) {

statement1;

statement2;

...

} H1-32

for Loop Control Flow

Condition yes

no

For Loop Body

Initialization

Update Expression

H1-33

for Loops vs while Loops

Any for loop can be written as a while loop
These two loops mean exactly the same thing:

for (initialization; condition; update)
statement;

initialization;
while (condition) {

statement;
update;

} H1-34

Counting in for Loops

/* Print n asterisks */
for (count = 1 ; count <= n ; count = count + 1) {

printf ("*") ;
}

/* Different style of counting */
for (count = 0 ; count < n ; count = count + 1) {

printf ("*");
}

H1-35

#define ROWS 3

#define COLS 5

...

for (row = 1; row <= ROWS ; row = row + 1) {

for (col = 1 ; col <= COLS ; col = col + 1) {

printf("∗");

}

printf("\n");

}

“3 Rows of 5” as a Nested for Loop
inner
loop:
print
one
row

outer
loop:
print 3
rows

H1-36

Yet Another 2-D Figure
How would you print the following diagram?

 ∗
 ∗ ∗
 ∗ ∗ ∗
 ∗ ∗ ∗ ∗
 ∗ ∗ ∗ ∗ ∗

For every row (row = 1, 2, 3, 4, 5)
Print row stars

H1-7

H1-37

Solution: Another Nested Loop

#define ROWS 5
...

int row, col ;
for (row = 1 ; row <= ROWS ; row = row + 1) {

for (col = 1 ; col <= row ; col = col + 1) {
printf("∗") ;

}

printf("\n");

} H1-38

Yet One More 2-D Figure
How would you print the following diagram?

∗ ∗ ∗ ∗ ∗
 ∗ ∗ ∗ ∗
 ∗ ∗ ∗
 ∗ ∗
 ∗

For every row (row = 0, 1, 2, 3, 4)

Print row spaces followed by (5 - row) stars

H1-39

Yet Another Nested Loop
#define ROWS 5
...

int row, col ;
for (row = 0 ; row < ROWS ; row = row + 1) {

for (col = 1 ; col <= row ; col = col + 1)
printf(" ") ;

for (col = 1 ; col <= ROWS – row ; col = col + 1)
printf("∗") ;

printf("\n");

} H1-40

while (sum < 10) ;
sum = sum + 2;

Some Loop Pitfalls

for (i = 1; i != 10 ; i = i + 2)
sum = sum + i ;

for (i = 0; i <= 10; i = i + 1);
sum = sum + i ;

H1-41

Double Danger

double x ;
for (x = 0.0 ; x < 10.0 ; x = x + 0.2)

printf("%.18f", x) ;

Seems harmless...

H1-42

Double Danger
What you expect: What you might get:

0.000000000000000000 0.000000000000000000
0.200000000000000000 0.200000000000000000
0.400000000000000000 0.400000000000000000
... ...
9.000000000000000000 8.999999999999999997
9.200000000000000000 9.199999999999999996
9.400000000000000000 9.399999999999999996
9.600000000000000000 9.599999999999999996
9.800000000000000000 9.799999999999999996

9.999999999999999996

H1-8

H1-43

int i ;

double x ;

for (i = 0 ; i < 50 ; i = i + 1)

{

x = (double) i / 5.0 ;

printf(“%.18f”, x) ;

}

Use ints as Loop Counters

H1-44

Counting in Loops
Counting up by one or down by one:

for (i = 1 ; i <= limit ; i = i+1) { . . . }

times_to_go = limit;
while (times_to_go > 0) {

• • •
times_to_go = times_to_go - 1;

}

H1-45

Counting Up or Down by 1
This pattern is so common there is special
jargon and notation for it

To "increment:" increase (often by 1)
To "decrement:" decrease (often by 1)

C operators:
Post-increment (x++): add 1
Post-decrement (x--): subtract 1 H1-46

Handy Shorthand x++ x--

Used by itself,
x++ means the same as x = x+1
x-- means the same as x = x-1

Very often used with loop counters:
for (i=1 ; i <= limit ; i++) { . . . }

times_to_go = limit;
while (times_to_go > 0) {

. . .
times_to_go-- ...

H1-48

Iteration Summary

General pattern:
Initialize, test, do stuff, repeat . . .

“while” and “for” are equally general in C
Use “for” when initialize/test/update are
closely related and simple, especially
when counting

H1-49

Looking Ahead

We’ll talk more about how to design loops

We’ll discuss complex conditional
expressions

Can be used with loops as well as in
conditional statements

We’ll see “arrays”, a powerful new way of
organizing data

Very often used with loops

