
G3-1

G3-1

University of Washington
Computer Programming I

Structuring Program Files

© 2000 UW CSE G3-2

Structuring Programs
The function is the basic unit of a C 
program

Programs often use many functions
Some are defined within the program
Some are in libraries

Organizing and ordering the functions and 
other parts within the .c file is important

G3-3

Order in the Program
General principle:  identifiers (names of 
things) must be declared before they are 
used.
Variables:

place them first within each function
#define constants:

placed at the top of the .c file

What about functions?

G3-4

Order for Functions in the .c File

Function names are identifiers, so… they 
too must be declared before they are used:

#include <stdio.h>

void fun2 (void) { ... }
void fun1 (void) { ...; fun2(); ... }
int main (void) { ...; fun1(); ... return 0; }

fun1 calls fun2, so fun2 is defined before
fun1, etc.

G3-5

Function Prototypes
Insisting that all the code of each function 

precede all calls to that function is sometimes:

Impossible:  function A calls B, and B calls A

Inconvenient: printf() is a function, but we 
don’t want its code in our program

But the ordering rule requires that the function 
names be declared before they can be used (in 
a call).

Is there any solution?

G3-6

Solution: Function Prototypes
Function prototypes allow us to define the 

name, so that it can be used, without 
giving the code for the function. 

The prototype gives the function name, 
return type, and the types of all the 
parameters but no code.  

In place of the { } code block, there is a 
semicolon.



G3-2

G3-7

Example Function Prototypes

void Useless(void);

void PrintInteger(int value);

double CalculateTax (double amount,         
double rate);

G3-8

Using Prototypes

Write prototypes for your functions near 
the top of the program

Can use the function anywhere thereafter
Fully define the function later, wherever 

convenient
Highly recommended to aid program 

organization

G3-9

Library Functions

What about library functions, like printf?   

You must also tell the compiler that you are 
going to use the library which contains printf

This is the purpose of the #include directive

The linker knows where the libraries are

G3-10

#include <stdio.h>

The “#include <...>” means “go get the file ... and 
insert what’s in it right here (as if it had been 
typed here)”

stdio.h contains function prototypes for scanf 
and printf and the other functions in the 
standard I/O library 

The actual code for them is NOT there, just 
prototypes.  The (result of compiling) the code 
is in a library that is combined with your code 
by the linker

G3-11

Compilers, Linkers, etc.

library  
(ANSI)header

(stdio.h)

executable
program

c
o
m
p
i
l
e
r

l
i
n
k
e
r

source
code

object 
code

.c file 0110
1000
1101

G3-12

Putting it All Together

#include  directives
…
#define  constants
…
Function prototypes
…
Full function definitions
…



G3-3

G3-13

Logical Order vs. Control Flow

With prototypes, the functions can be 
placed in any physical order

Order within the source file has no 
influence on control flow

Programs always start at the function main
So there should always be a main

No function is executed until it is called by 
some other function
Only exception: main

G3-14

Summary

Organizing the parts of a .c file is important

General principle: identifiers must be declared 
before they are used

For functions, a prototype can be declared 

Prototype: near the beginning of the program

Function detail: later on

For libraries, mention the library name in a 
#include directive

Source order and control flow are different 
concepts


