
Possible Solution for Parsing/Cleaning Data Exercise

Question 1

def get_year(input_list):

output_list = []

for lines in input_list:

first_portion = lines.split("(")

second_portion = first_portion[1].split(")")

output_list.append(second_portion[0])

return output_list

Question 2

def upper_case_cse(input_str):

 first_iteration = input_str.replace('c','C')

 second_iteration = first_iteration.replace('s','S')

 third_iteration = second_iteration.replace('e','E')

 return third_iteration

Possible Solution for Debugging Exercise

def parse_data():

file = open("movie_genres.txt","r")

movie_name = []

movie_year = []

movie_genre = []

for line in file:

line_data = line.split('" (')

movie_name.append(line_data[0].replace('"',''))

sub_line_data = line_data[1].split(')')

movie_year.append(int(\

 sub_line_data[0].replace('/','').\

 replace('I','').\

 replace('V','').\

 replace('?','9')))

movie_genre.append(sub_line_data[1].

 replace('\t','').\

 replace('\n',''))

parse_data()

Possible Solution for Function Decomposition Exercise

Assume that the output of the function parse_data_to_dicts() returns a

list of dictionaries with keys of Name, Year, and Genre.

1. Find a year's major category.

list_of_movies = parse_data_to_dicts()

parse_year_genre_data_by_key(list_of_movies, key, value)

input: the data (list of dictionaries), string of key ('Year' or

 'Genre'), and key value (2010 or 'Action')

output: list of respective data that matches key and value

ex: parse_year_genre_data_by_key(list_of_movies, 'Year', 2010)

 will give you a list of movie genre in year 2010.

find_major_category(list)

input: list of data

 output: the value which appears most often in the list

Use parse_year_genre_data_by_key with a specific year and the key

'Year' to get a list of all genres in the given year.

Use the list that is returned by parse_year_genre_data_by_key as an

input for the function find_major_category which will return the

genre that appears the most often.

2. Find the best (most productive) year for a certain category.

Reuse the parse_year_genre_data_by_key as above, with different

inputs.

ex: parse_year_genre_data_by_key(list_of_movies, ‘Genre’, ‘Action’)

 will give you a list of years in which action movies were created.

Use parse_year_genre_data_by_key to get a list of years in which the

given genre was created.

Use the list that is returned by parse_year_genre_data_by_key as an

input for the function find_major_category which will return the year

that appears the most often.

Note: The problems above could have been solved by creating two functions,

for example get_most_popular_genre(year) and get_most_popular_year(genre).

But creating one function (like parse_year_genre_data_by_key) which

instead takes a key like “Genre” or “Year” to do similar computations in

both cases is better stylistically.

