
Recursion

Winter 2014

UW CSE 140

To seal: moisten flap,
fold over, and seal

1

Three recursive algorithms

• Sorting

• GCD (greatest common divisor)

• Exponentiation

Used in cryptography,
which protects information
and communication

2

Sorting a list

• Python’s sorted function
returns a sorted version of a list.
sorted([3, 1, 4, 1, 5, 9])

 [1, 1, 3, 4, 5, 9]

• How could you implement sorted?

• Idea (“quicksort”, invented in 1960):
– Choose an arbitrary element (the “pivot”)

– Collect the smaller items and put them on its left

– Collect the larger items and put them on its right

Sir Anthony Hoare

3

First version of quicksort

def quicksort(thelist):

 """Return a sorted version of thelist."""

 pivot = thelist[0]

 smaller = [elt for elt in thelist if elt < pivot]

 larger = [elt for elt in thelist if elt > pivot]

 return smaller + [pivot] + larger

print quicksort([3, 1, 4, 1, 5, 9])

 [1, 1, 3, 4, 5, 9]

There are three problems with this definition
Write a test case for each problem

4

Problems with first version of quicksort

1. The “smaller” and “larger” lists aren’t sorted

2. Fails if the input list is empty

3. Duplicate elements equal to the pivot are lost

5

Near-final version of quicksort

def quicksort(thelist):

 """Return a sorted version of thelist."""

 if len(thelist) < 2:

 return thelist

 pivot = thelist[0]

 smaller = [elt for elt in thelist if elt < pivot]

 larger = [elt for elt in thelist if elt > pivot]

 return quicksort(smaller) + [pivot] + quicksort(larger)

How can we fix the problem with duplicate pivot values?

6

2 ways to handle duplicate pivot values

def quicksort(thelist):

 """Return a sorted version of thelist."""

 if len(thelist) < 2:

 return thelist

 pivot = thelist[0]

 smaller = [elt for elt in thelist if elt < pivot]

 pivots = [elt for elt in thelist if elt == pivot]

 larger = [elt for elt in thelist if elt > pivot]

 return quicksort(smaller) + pivots + quicksort(larger)

def quicksort(thelist):

 """Return a sorted version of thelist."""

 if len(thelist) < 2:

 return thelist

 pivot = thelist[0]

 smaller = [elt for elt in thelist[1:] if elt <= pivot]

 larger = [elt for elt in thelist if elt > pivot]

 return quicksort(smaller) + [pivot] + quicksort(larger)

7

The form of a recursive algorithm

• Determine whether the problem is small or large

• If the problem is small: (“base case”)

– Solve the whole thing

• If the problem is large: (“recursive case”)

– Divide the problem, creating one or more smaller
problems

– Ask someone else to solve the smaller problems
• Recursive call to do most of the work

– Do a small amount of postprocessing on the result(s)
of the recursive call(s)

8

Recursion design philosophy

• Recursion expresses the essence of divide and
conquer
– Solve a smaller subproblem(s), then
– Use the answer to solve the original problem

• Passing the buck: I am willing to do a small

amount of work, as long as I can offload most of
the work to someone else.

• Wishful thinking: If someone else solves most of
the problem, then I will do the rest.

9

Decomposition for recursion

List algorithms:
• Base case: short, or empty, list
• Recursive case: process

– all but the first element of the list, or
• The smaller subproblem is only a tiny bit smaller
• The postprocessing combines the first element of the list with the recursive result

– half of the list
• Often recursively process both halves
• The postprocessing combines the two recursive results

Numeric algorithms:
• Base case: small number (often 1 or 0)
• Recursive case: process a smaller value

– 1 less than the original value
– half of the original value
– …

File system:
• Base case: single file
• Recursive case: process a subdirectory
Geographical algorithms:
• Base case: small area
• Recursive case: smaller part of a map (or other spatial representation) 10

Recursion: base and inductive cases

• A recursive algorithm always has:

– a base case (no recursive call)

– an inductive or recursive case (has a recursive call)

• solves a smaller problem

• What happens if you leave out the base case?

• What happens if you leave out the inductive
case?

11

Factorial

def fact(num):

 """ Assumes num is an int > 0, return n!"""

 if num == 1:

 return num

 else:

 return num * fact(num - 1)

print fact(3)

print fact(1)

print fact(2)

12

Sum List

def sum_list(lst):

 if len(lst) == 0:

 return 0

 else:

 return lst[0] + sum_list(lst[1:])

sum_list([1, 3, 6])

13

Fibonacci

def fib(n):

 if n == 0 or n == 1:

 return 1

 else:

 return fib(n - 1) + fib(n - 2)

print fib(6)

14

GCD (greatest common divisor)

gcd(a, b) = largest integer that divides both a and b

• gcd(4, 8) = 4

• gcd(15, 25) = 5

• gcd(16, 35) = 1

How can we compute GCD?

15

Euclid’s method for computing GCD
(circa 300 BC, still commonly used!)

 a if b = 0

 gcd(a, b) = gcd(b, a) if a < b

 gcd(a-b, b) otherwise

16

Python code for Euclid’s algorithm

def gcd(a, b):

 """Return the greatest common divisor of a and b."""

 if b == 0:

 return a

 if a < b:

 return gcd(b, a)

 return gcd(a - b, b)

17

Exponentiation

Goal: Perform exponentiation, using only addition, subtraction,
multiplication, and division. (Example: 34)
def exp(base, exponent):

 """Return baseexponent.

 Exponent is a non-negative integer."""

 if exponent == 0:

 return 1

 return base * exp(base, exponent - 1)

Example:
exp(3, 4)
3 * exp(3, 3)
3 * (3 * exp(3, 2))
3 * (3 * (3 * exp(3, 1)))
3 * (3 * (3 * (3 * exp(3, 0))))
3 * (3 * (3 * (3 * 1)))

18

Faster exponentiation

Suppose the exponent is even.
Then, baseexponent = (base*base)exponent/2

Examples: 34 = 92 92 = 811 512 = 256 256 = 6253

New implementation:
def exp(base, exponent):

 """Return baseexponent.

 Exponent is a non-negative integer."""

 if exponent == 0:

 return 1

 if exponent % 2 == 0:

 return exp(base * base, exponent / 2)

 return base * exp(base, exponent - 1)

19

Comparing the two algorithms
Original algorithm: 12 multiplications
512
5 * 511
5 * 5 * 510
5 * 5 * 5 * 59
…
5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 50
5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 1
5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5
5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 25
5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 125
…
244140625

Fast algorithm: 5 multiplications

512
(5 * 5)6
256
(25 * 25)3
6253

625 * 6252
625 * 625 * 6251
625 * 625 * 625 * 6250
625 * 625 * 625 * 1
625 * 625 * 625
625 * 390625
244140625

Speed matters: In cryptography, exponentiation is done with 600-digit numbers.
20

Recursion vs. iteration

• Any recursive algorithm can be re-implemented
as a loop instead
– This is an “iterative” expression of the algorithm

• Any loop can be implemented as recursion
instead

• Sometimes recursion is clearer and simpler
– Mostly for data structures with a recursive structure

• Sometimes iteration is clearer and simpler

21

