
List comprehensions

UW CSE 140

Winter 2013

Ways to express a list

1. Explicitly write the whole thing:
squares = [0, 1, 4, 9, 16, 25, 36, 49, 64, 81,
100]

2. Write a loop to create it:
squares = []
for i in range(11):

squares.append(i*i)

3. Write a list comprehension:
squares = [i*i for i in range(11)]

A list comprehension is a concise description of a list
A list comprehension is shorthand for a loop

Mathematical notation

Let I be the integers

• { x : x ∈ I and x = x2 } is the set { 0, 1 }

• { x : x ∈ I and x > 0 } is the set of all positive

integers

• { x2 : x ∈ I and 0 ≤ x < 10 and prime(x) }

Python notation:

• { x*x for x in range(10) if prime(x) }

expression domain conditionvariable

expression domain conditionvariable

Two ways to convert Centigrade to

Fahrenheit
ctemps = [17.1, 22.3, 18.4, 19.1]

ftemps = []
for c in ctemps:
f = celsius_to_farenheit(c)
ftemps.append(f)

ftemps = [celsius_to_farenheit(c) for c in ctemps]

With a loop:

With a list comprehension:

The comprehension is usually shorter, more readable, and more efficient

Syntax of a comprehension

something

that can be

iterated

expres-

sion
zero or more if clausesfor clause (required)

assigns value to the

variable x

[(x,y) for x in org1 for y in org2 if sim(x,y) > threshold]

zero or more

additional

for clauses

Semantics of a comprehension

[(x,y) for x in org1 for y in org2 if sim(x,y) > threshold]

result = []
for x in org1:
for y in org2:
if sim(x,y) > threshold:
result.append((x,y))

… use result …

Types of comprehension

List

[i*2 for i in range(3)]

Set

{ i*2 for i in range(3)}

Dictionary

d = {key: value for item in sequence …}

{ i: i*2 for i in range(3)}

Preparing names for alphabetization

Goal: convert “firstname lastname” to “lastname, firstname”

names = ["Isaac Newton", "Albert Einstein", "Niels Bohr", "Marie
Curie", "Charles Darwin", "Louis Pasteur", "Galileo Galilei",
"Margaret Mead"]

result = []
for name in names:

split_name = name.split(" ")
last_name_first = split_name[1] + ", " + split_name[0]
result.add(last_name_first)

split_names = [name.split(" ") for name in names]
last_names_first = [sn[1] + ", " + sn[0] for sn in split_names]
Bonus: last_names = [split_name[1] for split_name in split_names]

Another idea: write a function,
then use the function in a comprehension

Cubes of the first 10 natural numbers

Goal:

Produce [0, 1, 8, 27, 64, 125, 216, 343, 512, 729]

cubes = []

for x in range(10):

cubes.append(x**3)

cubes = [x**3 for x in range(10)]

Powers of 2, 20 through 210

Goal: [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]

[2**i for i in range(11)]

Even elements of a list

Goal: Given an input list nums, produce a list of

the even numbers in nums

nums = [3, 1, 4, 1, 5, 9, 2, 6, 5]

⇒ [4, 2, 6]

[num for num in nums if num % 2 == 0]

Gene sequence similarity

Goal: Find all similar pairs of genome sequences (one
sequence from org1, one from org2)

org1 = ["ACGTTTCA", "AGGCCTTA", "AAAACCTG"]
org2 = ["AGCTTTGA", "GCCGGAAT", "GCTACTGA"]

“Similar” means: similarity(seq1, seq2) > threshold
def similarity(sequence1, sequence2)

"""Return a number representing the
similarity score between the two arguments""“

...

[(s1,s2) for s1 in org1 for s2 in org2
if similarity(s1,s2) > threshold]

All above-average 2-die rolls

Result list should be a list of 2-tuples:

[(2, 6), (3, 5), (3, 6), (4, 4), (4, 5), (4, 6), (5, 3), (5, 4),
(5, 5), (5, 6), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)]

[(r1, r2) for r1 in [1,2,3,4,5,6]
for r2 in [1,2,3,4,5,6]
if r1 + r2 > 7]

[(r1, r2) for r1 in range(1, 7)
for r2 in range(8-x, 7)]

Get more practice

• Use comprehensions where appropriate

• Convert loops to comprehensions

• Convert comprehensions to loops

