
Data Abstraction

UW CSE 140

Winter 2013

What is a program?

• What is a program?

– A sequence of instructions to achieve some particular
purpose

• What is a library?

– A collection of routines that are helpful in multiple
programs

• What is a data structure?

– A representation of data, and

– Routines to manipulate the data

• Create, query, modify

Why break a program into parts?

• Easier to understand each part

– Abstraction: When using a part, understand only

its specification (documentation string); ignore its

implementation

• Easier to test each part

• Reuse parts

Breaking a program into parts:

the parts, and how to express them

Organizing the program & algorithm:

• Function (procedure)

• Library (collection of useful functions)

• Data structure (representation + methods)

Organizing the code (related but not the same!):

• Files

• Modules

• Namespaces

Namespace

• Disambiguates duplicate variable names

• Examples:
– math.sin

– File system directories

Review:

Accessing variables in a namespace

import math
... math.sin ...

import networkx as nx

g = nx.Graph()

module

name

alias

from networkx import Graph, DiGraph

g = Graph()

Graph and DiGraph are now

available in the global namespace

Recall the design exercise

• We created a module or library: a set of related
functions

• The functions operated on the same data structure

– a dictionary associating words with a frequency count

– a list of tuples of measurements

• Each module contained:

– A function to create the data structure

– Functions to query the data structure

– We could have added functions to modify the data
structure

Two types of abstraction

Abstraction: Ignoring/hiding some aspects of a thing

• In programming, ignore everything except the specification or
interface

• The program designer decides which details to hide and to expose

Procedural abstraction:

• Define a procedure/function specification

• Hide implementation details

Data abstraction:

• Define what the datatype represents

• Define how to create, query, and modify

• Hide implementation details of representation and of operations
– Also called “encapsulation” or “information hiding”

Data abstraction

• Describing field measurements:

– “A dictionary mapping strings to lists, where the

strings are sites and each list has the same length and

its elements corresponds to the fields in the data file.”

– “FieldMeasurements”

• Which do you prefer? Why?

(This must appear in the documentation string of

every function related to field measurements!)

Representing a graph

• A graph consists of:

– nodes/vertices

– edges among the nodes

• Representations:

– Set of edge pairs

• (a, a), (a, b), (a, c), (b, c), (c, b)

– For each node, a list of neighbors

• { a: [a, b, c], b: [c], c: [b] }

– Matrix with boolean for each entry

a

b c

a b c

a ✓ ✓ ✓

b ✓

c ✓

Text analysis module
(group of related functions)

representation = dictionary

def read_words(filename):
"""Return a dictionary mapping each word in filename to its

frequency"""
words = open(filename).read().split()
wordcounts = {}
for w in words:
wordcounts.setdefault(w, 0) # set wordcounts[w] to 0 if not set
wordcounts[w] += 1

return wordcounts

def wordcount(wordcounts, word):
"""Given a frequency dictionary, return the count of the given

word"""
return wordcounts[word]

def topk(wordcounts, k=10):
"""Given a frequency dictionary, return the top k most frequent

words, in order"""
scores_with_words = [(c,w) for (w,c) in wordcounts.items()]
scores_with_words.sort()
return scores_with_words[0:k]

def totalwords(wordcounts):
"""Return the total number of words in the file"""
return sum([s for (w,s) in wordcounts])

program to compute top 10:
wordcounts = read_words(filename)
result = topk(wordcounts, 10)

Problems with the implementation

• The wordcount dictionary is exposed to the client:
the user might corrupt or misuse it.

• If we change our implementation (say, to use a list),
it may break the client program.

We prefer to
– Hide the implementation details from the client

– Collect the data and functions together into one unit

program to compute top 10:
wordcounts = read_words(filename)
result = topk(wordcounts, 10)

Datatypes and classes

• A class defines a data type

• A class creates a namespace for:

– Variables to hold the data

– Functions to create, query, and modify

• Each function defined in the class is called a method

– Takes “self” (a value of the class type) as the first argument

• A class defines a datatype

– An object is a value of that type

– Compare to int vs. 22

Recall the text analysis implementation

def read_words(filename):

"""Populate a WordCounts object from the given file"""

words = open(filename).read().split()

wordcounts = {}

for w in words:

wordcounts.setdefault(w, 0)

wordcounts[w] += 1

def wordcount(wordcounts, word):

"""Return the count of the given word"""

return wordcounts[word]

def topk(wordcounts, k=10):

"""Return a list of the top k most frequent words in order"""

scores_with_words = [(c,w) for (w,c) in wordcounts.items()]

scores_with_words.sort()

return scores_with_words[0:k]

def totalwords(wordcounts):

"""Return the total number of words in the file"""

return sum([s for (w,s) in wordcounts])

program to compute top 10:
wordcounts = read_words(filename)
result = topk(wordcounts, 10)

Text analysis,

as a class
class WordCounts:

"""Represents the words in a file."""
Internal representation:
variable wordcounts is a dictionary from each word to its frequency

def read_words(self, filename):
"""Populate a WordCounts object from the given file"""
words = open(filename).read().split()
self.wordcounts = {}
for w in words:
self.wordcounts.setdefault(w, 0)
self.wordcounts[w] += 1

def wordcount(self, word):
"""Return the count of the given word"""
return self.wordcounts[word]

def topk(self, k=10):
"""Return a list of the top k most frequent words in order"""
scores_with_words = [(c,w) for (w,c) in self.wordcounts.items()]
scores_with_words.sort()
return scores_with_words[0:k]

def totalwords(self):
"""Return the total number of words in the file"""
return sum([s for (w,s) in self.wordcounts])

Defines a class

(a datatype)

named

WordCounts

Modifies a

WordCounts

object

Queries a

WordCounts

object

read_words does

not return a value;

it mutates self

The type of self
is WordCounts

wordcounts
read_words
wordcount
topk
totalwords

The namespace of a

WordCounts object:
dict

fn
fn

fn fn

Each function in a class is

called a method.

Its first argument is of the

type of the class.

program to compute top 10:
wc = WordCounts()
wc.read_words(filename)
result = wc.topk(10)

topk takes

2 arguments

The type of wc is

WordCounts

program to compute top 10:

wc = WordCounts()
wc.read_words(filename)

result = wc.topk(10)

result = WordCounts.topk(wc, 10)

A namespace,

like a module

A function that takes

two arguments

A value of type

WordCounts Two

equivalent

calls

Weird constructor:

it does no work

You have to call a

mutator immediately

afterward

Class with constructor
class WordCounts:

"""Represents the words in a file."""
Internal representation:
variable wordcounts is a dictionary from words to their frequency

def __init__(self, filename):
"""Create a WordCounts object from the given file"""
words = open(filename).read().split()
self.wordcounts = {}
for w in words:
self.wordcounts.setdefault(w, 0)
self.wordcounts[w] += 1

def wordcount(self, word):
"""Return the count of the given word"""
return self.wordcounts[word]

def topk(self, k=10):
"""Return a list of the top k most frequent words in order"""
scores_with_words = [(c,w) for (w,c) in self.wordcounts.items()]
scores_with_words.sort()
return scores_with_words[0:k]

def totalwords(self):
"""Return the total number of words in the file"""
return sum([s for (w,s) in self.wordcounts])

program to compute top 10:
wc = WordCounts(filename)
result = wc.topk(10)

Alternate

implementation
class WordCounts:
"""Represents the words in a file."""
Internal representation:
variable words is a list of the words in the file

def __init__(self, filename):
"""Create a WordCounts object from the given file"""
self.words = open(filename).read().split()

def wordcount(self, word):
"""Return the count of the given word"""
return self.words.count(word)

def topk(self, k=10):
"""Return a list of the top k most frequent words in order"""
scores_with_words = [(wordcount(w),w) for w in set(self.words)]
scores_with_words.sort()
return scores_with_words[0:k]

def totalwords(self):
"""Return the total number of words in the file"""
return len(self.words)

program to compute top 10:
wc = WordCounts(filename)
result = wc.topk(10)

Exact same program!

words
__init__
wordcount
topk
totalwords

The namespace of a

WordCounts object:

fn
fn

fn fn

list

Quantitative

analysis

def read_measurements(filename):
"""Return a dictionary mapping column names to data.

Assumes the first line of the file is column names."""
datafile = open(filename)
rawcolumns = zip(*[row.split() for row in datafile])
columns = dict([(col[0], col[1:]) for col in rawcolumn
return columns

def tofloat(measurements, columnname):
"""Convert each value in the given iterable to a float"""
return [float(x) for x in measurements[columnname]]

def STplot(measurements):
"""Generate a scatter plot comparing salinity and temperature"""
xs = tofloat(measurements, "salt")
ys = tofloat(measurements, "temp")
plt.plot(xs, ys)
plt.show()

def minimumO2(measurements):
"""Return the minimum value of the oxygen measurement"""
return min(tofloat(measurements, "o2"))

Program to plot
mydict = read_measurements(filename)
result = mydict.Stplot()

Quantitative analysis,

as a class
class Measurements:

"""Represents a set of measurements in UWFORMAT.""“

def read_measurements(self, filename):
"""Populate a Measurements object from the given file.

Assumes the first line of the file is column names."""
datafile = open(filename)
rawcolumns = zip(*[row.split() for row in datafile])
self.columns = dict([(col[0], col[1:]) for col in rawcolumn
return columns

def tofloat(self, columnname):
"""Convert each value in the given iterable to a float"""
return [float(x) for x in self.columns[columnname]]

def STplot(self):
"""Generate a scatter plot comparing salinity and temperature"""
xs = tofloat(self.columns, "salt")
ys = tofloat(self.columns, "temp")
plt.plot(xs, ys)
plt.show()

def minimumO2(self):
"""Return the minimum value of the oxygen measurement"""
return min(tofloat(self.columns, "o2"))

Program to plot
mm = Measurements()
mm.read_measurements(filename)
result = mm.Stplot()

Quantitative analysis,

with a constructor
class Measurements:

"""Represents a set of measurements in UWFORMAT.""“

def __init__(self, filename):
"""Create a Measurements object from the given file.

Assumes the first line of the file is column names."""
datafile = open(filename)
rawcolumns = zip(*[row.split() for row in datafile])
self.columns = dict([(col[0], col[1:]) for col in rawcolumn

def tofloat(self, columnname):
"""Convert each value in the given iterable to a float"""
return [float(x) for x in self.columns[columnname]]

def STplot(self):
"""Generate a scatter plot comparing salinity and temperature"""
xs = tofloat(self.columns, "salt")
ys = tofloat(self.columns, "temp")
plt.plot(xs, ys)
plt.show()

def minimumO2(self):
"""Return the minimum value of the oxygen measurement"""
return min(tofloat(self.columns, "o2"))

Program to plot
mm = Measurements(filename)
result = mm.Stplot()

