Data Abstraction

UW CSE 140
Winter 2013

What is a program?

* What is a program?

— A sequence of instructions to achieve some particular
purpose

* What is a library?

— A collection of routines that are helpful in multiple
programs

* What is a data structure?
— A representation of data, and

— Routines to manipulate the data
e Create, query, modify

Why break a program into parts?

e Easier to understand each part

— Abstraction: When using a part, understand only
its specification (documentation string); ignore its
implementation

e Easier to test each part
* Reuse parts

Breaking a program into parts:
the parts, and how to express them

Organizing the program & algorithm:

* Function (procedure)

* Library (collection of useful functions)

e Data structure (representation + methods)

Organizing the code (related but not the samel):
* Files

* Modules

* Namespaces

Namespace

* Disambiguates duplicate variable names

 Examples:

— math.sin

— File system directories

Bmfo |k Doty]
[ERm - e e lis-] Q M-
T IEVKLS | L L B Hired
R b G EsthCuibe jan 18, 2003, 5:00 P4 — Fali
= ¥ SICMOTDID_derogd jan 15, 2013, &:12 PeA -- Firkdi
R TR * @ Cousis jan 13, 2012, L:14 FMi ~ Foldar
FUALES v [l CESE Teday, 227 Ml -t Fukdst E
oy Apphicanibes v [l wiki Teday, 2144 Bl —~ Foldai
3 etk T Teaday, 345 P - Fikhis
m Echindube vk Jus LB, 30013, 3210 A 4 KE EH € v T
v ST Y just LB, 2017, 352 Al - Forktt
LS Drapiacs b Bl et Ju LB, 2012, 1L45 AM as Firkduai
kil harrirkesivy bl bantonds-law fisn 18, J01E, 305 AM 2 Faktias
o werhic 353 b assigreer jus LB, 201E, 3:03 &M —~ Foldas
i Sk dieg Ll it _seratch |ut 18, 201z, 2:53 AW as Fukdst
il FPACNGS Biw = T jud LB, 20LE, 3:49 Al -— Fio bk
0 B ol el jus L7, 3003, 32 Fad — Frbdur
wareeind Ay M ik ju L7, 201Z, %32 FM LB Documert
Teadxy P meirHenMcacy Jut L7, 2017, 858 M - Furktut
= emendiy By prochianlemi jus 15, 201F, 1554 &M - Foiktui
L Podt mggk Makifla jus 13, 20LE, 1L17 P 4 KB Flain naxt
[i images LT T T oy 17, 2082, B 5E P —_ Fakdi
B 1 Wit b G assignmeatd Moy d, 2013, 1107 P - Fikdui
J B Ly assighenenrd Apy d, P02, 130 P —_ Frabdsi
B S P jus 17, 200F, %32 PM 4KB Senll_umano (g
b handmis fu 17, 2iH1E, F32 PM — Fukai .

Review:
Accessing variables in a namespace

import math
. math.sin ...

import networkx as nx
|

module alias
name

g = nx.Graph()

from networkx import Graph, DiGraph Graphand DiGraph are now
available in the global namespace

g = Graph()

Recall the design exercise

 We created a module or library: a set of related
functions

* The functions operated on the same data structure
— a dictionary associating words with a frequency count
— a list of tuples of measurements

 Each module contained:
— A function to create the data structure

— Functions to query the data structure

— We could have added functions to modify the data
structure

Abstraction: Ignoring/hiding some aspects of a thing

* In programming, ignore everything except the specification or
interface

 The program designer decides which details to hide and to expose

Procedural abstraction:
» Define a procedure/function specification
 Hide implementation details

Data abstraction:
 Define what the datatype represents
 Define how to create, query, and modify

 Hide implementation details of representation and of operations
— Also called “encapsulation” or “information hiding”

Data abstraction

* Describing field measurements:

— “A dictionary mapping strings to lists, where the
strings are sites and each list has the same length and
its elements corresponds to the fields in the data file.”

— “FieldMeasurements”
 Which do you prefer? Why?

(This must appear in the documentation string of
every function related to field measurements!)

Representing a graph

* A graph consists of:
— nodes/vertices
— edges among the nodes

* Representations:

— Set of edge pairs
* (a,a), (a, b), (3, c), (b, c), (c, b)

— For each node, a list of neighbors
 {a:[a, b, c], b:[c], c:[b]}

— Matrix with boolean for each entry __lalblc|
B
b | v/
o [

TEXt analySis module # program to compute top 10:

] wordcounts = read words(filename)
(group of related functions) result = topk (wordcounts, 10)

representation = dictionary

def read words (filename) :

"""Return a dictionary mapping each word in filename to its
frequency"""

words = open(filename) .read () .split()

wordcounts = {}

for w in words:
wordcounts.setdefault(w, 0) # set wordcounts[w] to 0 if not set
wordcounts[w] += 1

return wordcounts

def wordcount (wordcounts, word):

"""Given a frequency dictionary, return the count of the given
word" mwwn

return wordcounts|[word]

def topk (wordcounts, k=10):

"""Given a frequency dictionary, return the top k most frequent
words, in order"""

scores _with words = [(c,w) for (w,c) in wordcounts.items()]
scores_with words.sort()
return scores with words[0:k]

def totalwords (wordcounts) :
"""Return the total number of words in the file"""
return sum([s for (w,s) in wordcounts])

Problems with the implementation

program to compute top 10:
wordcounts = read words (filename)
result = topk (wordcounts, 10)

The wordcount dictionary is exposed to the client:
the user might corrupt or misuse it.

If we change our implementation (say, to use a list),
it may break the client program.

We prefer to

— Hide the implementation details from the client
— Collect the data and functions together into one unit

Datatypes and classes

* A class defines a data type

* A class creates a namespace for:
— Variables to hold the data

— Functions to create, query, and modify

* Each function defined in the class is called a method
— Takes “sel£” (a value of the class type) as the first argument

* A class defines a datatype
— An object is a value of that type
— Compare to int vs. 22

Recall the text analysis implementation

program to compute top 10:
wordcounts = read words(filename)
result = topk (wordcounts, 10)

def read words (filename) :
"""Populate a WordCounts object from the given file"""
words = open (filename) .read() .split()
wordcounts = {}
for w in words:
wordcounts.setdefault(w, 0)
wordcounts[w] += 1

def wordcount (wordcounts, word):
"""Return the count of the given word"""
return wordcounts[word]

def topk (wordcounts, k=10):
"""Return a list of the top k most frequent words in order"""
scores_with words = [(c,w) for (w,c) in wordcounts.items()]
scores_with words.sort()
return scores with words[0:k]

def totalwords (wordcounts) :
"""Return the total number of words in the file"""
return sum([s for (w,s) in wordcounts])

H The type of wc is # program to compute top 10:
TEXt anaIySISI WordCounts !>wc = WordCounts ()

wc.read words (filename)

as a CIaSS result = wc.topk(10)

class WordCounts: L— Defines a class
"""Represents the words in a file.""" topk takes
Internal representation: 2 arguments — (adatatype)
variable wordcounts is a dictionary from each word to its frequency named
_ WordCounts
def read words (self, m) : The type of self I
"nwpopulate a WordCounts object from the given fi| iSWordCounts >
words = open (filename) .read() .split() Modifies a
self .wordcounts = {} — WordCounts
for w in words: object
self .wordcounts.setdefault (w, 0)
self.wordcounts([w] +=1 read—words does _J
——e— not return a value; | _
def wordcount (self, word): — it mutates self
"""Return the count of the given word"""
return self.wordcounts[word]
def topk(self, k=10): Queries a
"""Return a list of the top k most frequent words in order""" WordCounts
scores with words = [(c,w) for (w,c) in self.wordcounts.items ()] —]
scores:with:words .sort() ObJeCt
return scores with words[0:k] The namespace of a
WordCounts object:
_ def totalwords(self): /@
wordcounts

called a method. For (w,s) in self.wordcounts]) wordeount

Its first argument is of the topk
type of the class. totalwords

ion i is fotal number of words in the file""" G
Each function in a class is u w i i read words

program to compute top 10: Weird constructor:
. it does no work

wc = WordCounts () N
: You have to call a
wc.read words (filename) —— _ _
- mutator immediately

afterward
result = wc.topk(10) A value of type
WordCounts Two
— equivalent
result = WordCounts. topk (wc, 10) calls
\ J |\ J .
! |

A namespace, A function that takes
like a module two arguments

program to compute top 10:

Class With Constructor wc = WordCounts (filename)

result = wc.topk(10)

class WordCounts:
"""Represents the words in a file."""
Internal representation:
variable wordcounts is a dictionary from words to their frequency

def init (self, filename):
"""Create a WordCounts object from the given file"""
words = open (filename) .read() .split()
self.wordcounts = {}
for w in words:
self.wordcounts.setdefault (w, 0)
self.wordcounts[w] +=1

def wordcount(self, word):
"""Return the count of the given word"""
return self.wordcounts[word]

def topk(self, k=10):
"""Return a list of the top k most frequent words in order"""
scores_with words = [(c,w) for (w,c) in self.wordcounts.items()]
scores_with words.sort()
return scores with words[0:k]

def totalwords (self):
"""Return the total number of words in the file"""
return sum([s for (w,s) in self.wordcounts])

Alternate # program to compute top 10:

wc = WordCounts (filename)
= wc.topk(10)

o o result =
clalsmoeci!:gm:entatlon \

"""Represents the words in a file.""" :
Internal representation: Exact same program!
variable words is a list of the words in the file

def init (self, filename):
"""Create a WordCounts object from the given file"""
self .words = open(filename) .read() .split()

def wordcount(self, word):
"""Return the count of the given word"""
return self.words.count (word)

def topk(self, k=10):
"""Return a list of the top k most frequent words in order"""
scores _with words = [(wordcount(w),w) for w in set(self.words)]
scores_with words.sort()
return scores with words[0:k]

The namespace of a

def totalwords (self): WordCounts object: ik
"""Return the total number of words in the [0 4s
return len (self.words) init ’—9@
wordcount >¢
topk
totalwords M

Program to plot

Quantitative mydict = read measurements (filename)

result = mydict.Stplot()

analysis

def read measurements(filename) :
"""Return a dictionary mapping column names to data.
Assumes the first line of the file is column names."""
datafile = open(filename)
rawcolumns = zip(*[row.split() for row in datafile])
columns = dict([(col[0], col[l:]) for col in rawcolumn
return columns

def tofloat(measurements, columnname) :
"""Convert each value in the given iterable to a float"""
return [float(x) for x in measurements[columnname]]

def STplot (measurements) :
"""Generate a scatter plot comparing salinity and temperature"""
xs = tofloat (measurements, "salt")
ys = tofloat (measurements, "temp")
plt.plot(xs, ys)
plt.show()

def minimumO2 (measurements) :
"""Return the minimum value of the oxygen measurement"""
return min (tofloat (measurements, "o2'"))

Program to plot

Qu a ntitative a n a Iys i S) x ;eEZi::;:IEJe:rel;:rgz:s (filename)

result = mm.Stplot()
as a class

class Measurements:
"""Represents a set of measurements in UWFORMAT."""“

def read measurements(self, filename):
"""Populate a Measurements object from the given file.
Assumes the first line of the file is column names."""
datafile = open(filename)
rawcolumns = zip(*[row.split() for row in datafile])
self.columns = dict([(col[0], col[l:]) for col in rawcolumn
return—columns

def tofloat(self, columnname) :
"""Convert each value in the given iterable to a float"""
return [float(x) for x in self.columns[columnname]]

def STplot(self):
"""Generate a scatter plot comparing salinity and temperature"""
xs = tofloat(self.columns, "salt")
ys = tofloat(self.columns, "temp")
plt.plot(xs, ys)
plt.show()

def minimumO2 (self) :
"""Return the minimum value of the oxygen measurement"""
return min (tofloat(self.columns, "o2"))

Program to plot

Quantitative analysis, |m.. ezt

= Measurements (filename)

with a constructor

class Measurements:
"""Represents a set of measurements in UWFORMAT.""™“

def init (self, filename):
"""Create a Measurements object from the given file.
Assumes the first line of the file is column names."""
datafile = open(filename)
rawcolumns = zip(*[row.split() for row in datafile])
self.columns = dict([(col[0], col[l:]) for col in rawcolumn

def tofloat(self, columnname) :
"""Convert each value in the given iterable to a float"""
return [float(x) for x in self.columns[columnname]]

def STplot(self):
"""Generate a scatter plot comparing salinity and temperature"""

xs = tofloat(self.columns, "salt")
ys = tofloat(self.columns, "temp")
plt.plot(xs, ys)

plt.show()

def minimumO2 (self) :
"""Return the minimum value of the oxygen measurement"""
return min (tofloat(self.columns, "o2"))

