
Testing

Michael Ernst

CSE 140

University of Washington

Testing

• Programming to analyze data is powerful

• It’s useless if the results are not correct

• Correctness is far more important than speed

Testing = double-checking results

• How do you know your program is right?

– Compare its output to a correct output

• How do you know a correct output?

– Real data is big

– You wrote a computer program because it is not
convenient to compute it by hand

• Use small inputs so you can compute by hand

• Example: standard deviation

– What are good tests for std_dev?

Tes�ng ≠ debugging

• Testing: determining whether your program is
correct

– Doesn’t say where or how your program is
incorrect

• Debugging: locating the specific defect in your
program, and fixing it

2 key ideas:

– divide and conquer

– the scientific method

What is a test?

• A test consists of:
– an input (sometimes called “test data”)

– an oracle (a predicate (boolean expression) of the output)

• Example test for sum:
– input: [1, 2, 3]

– oracle: result is 6

– write the test as: sum([1, 2, 3]) == 6

• Example test for sqrt:
– input: 3.14

– oracle: result is within 0.00001 of 1.772

– ways to write the test:
• sqrt(3.14) – 1.772 < 0.00001 and sqrt(3.14) – 1.772 > -0.00001
• -0.00001 < sqrt(3.14) – 1.772 < 0.00001
• math.abs(sqrt(3.14) – 1.772) < 0.00001

Test results

• The test passes if the boolean expression evaluates to True

• The test fails if the boolean expression evaluates to False

• Use the assert statement:

assert sum([1, 2, 3]) == 6

assert math.abs(sqrt(3.14) – 1.772) < 0.00001

• assert True does nothing

• assert False crashes the program

– and prints a message

Where to write test cases

• At the top level: is run every time you load your
program
def hypotenuse(a, b):
…

assert hypotenuse(3, 4) == 5
assert hypotenuse(5, 12) == 13

• In a test function: is run when you invoke the function
def hypotenuse(a, b):
…

def test_hypotenuse():
assert hypotenuse(3, 4) == 5
assert hypotenuse(5, 12) == 13

Assertions are not just for test cases

• Use assertions throughout your code

• Documents what you think is true about your

algorithm

• Lets you know immediately when something

goes wrong

– The longer between a code mistake and the

programmer noticing, the harder it is to debug

Assertions make debugging easier

• Common, but unfortunate, course of events:
– Code contains a mistake (incorrect assumption or algorithm)

– Intermediate value (e.g., in local variable, or result of a function
call) is incorrect

– That value is used in other computations, or copied into other
variables

– Eventually, the user notices that the overall program produces a
wrong result

– Where is the mistake in the program? It could be anywhere.

• Suppose you had 10 assertions evenly distributed in your
code
– When one fails, you can localize the mistake to 1/10 of your

code (the part between the last assertion that passes and the
first one that fails)

Where to write assertions

• Function entry: are arguments legal?

– Place blame on the caller before the function fails

• Function exit: is result correct?

• Places with tricky or interesting code

• Assertions are ordinary statements; e.g., can

appear within a loop:
for n in myNumbers:

assert type(n) == int() or type(n) == float()

Where not to write assertions

• Don’t clutter the code
– (Same rule as for comments)

• Don’t write assertions that are certain to succeed
– The existence of an assertion tells a programmer that

it might possibly fail

• Don’t write an assertion if the following code
would fail informatively
assert type(name) == str()
… “Hello, ” + name …

• Write assertions where they may be useful for
debugging

What to write assertions about

• Results of computations

• Correctly-formed data structures
assert 0 <= index < len(mylist)

assert len(list1) == len(list2)

When to write tests

• Two possibilities:
– Write code first, then write tests

– Write tests first, then write code

• It’s best to write tests first

• If you write the code first, you remember the
implementation while writing the tests
– You are likely to make the same mistakes in the implementation

• If you write the tests first, you will think more about the
functionality than about a particular implementation
– You might notice some aspect of behavior that you would have

made a mistake about

Write the whole test

• A common mistake:
1. Write the function

2. Make up test inputs

3. Run the function

4. Use the result as the oracle

• You didn’t write a test, but only half of a test
– Created the tests inputs, but not the oracle

• The test does not determine whether the
function is correct
– Only determines that it continues to be as correct (or

incorrect) as it was before

Tests are for specified behavior

def roots(a, b, c):

"""Returns a list of the two roots of ax**2 + bx + c."""

...

Bad test of implementation-specific behavior:
assert roots(1, 0, 1) == [1, -1]

Assertions inside a routine can be for

implementation-specific behavior

Tests prevent you from introducing

errors when you change a function

• Abstraction: the implementation details do

not matter

• Preventing introducing errors when you make

a change is called “regression testing”

Write tests that cover all the

functionality

• Think about and test “corner cases”

– Empty list

– Zero

– int vs. float values

Tests might not reveal an error

def mean(numbers):

"""Returns the average of the argument list.

The argument must be a non-empty list of numbers."""

return sum(numbers)/len(numbers)

Tests

assert mean([1, 2, 3, 4, 5]) == 3

assert mean([1, 2.1, 3.2]) == 2.1

This implementation is elegant, but wrong!

mean([1,2,3,4])

Don’t write meaningless tests

def mean(numbers):

"""Returns the average of the argument list.

The argument must be a non-empty list of numbers."""

return sum(numbers)/len(numbers)

Unnecessary tests. Don’t write these:
mean([1, 2, “hello”])

mean(“hello”)

mean([])

