
Sharing, mutability, and

immutability

Michael Ernst

CSE 140

University of Washington

Copying and mutation

list1 = ["e1", "e2", "e3", "e4"]

list2 = list1

list3 = list(list1) # make a copy; also “list1[:]”

print list1, list2, list3

list1.append("e5")

list2.append("e6")

list3.append("e7")

print list1, list2, list3

list1 = list3

list1.append("e8")

print list1, list2, list3

Variable reassignment

vs. object mutation

• Reassigning a variable does not change (mutate)
any object
– Always done via the syntax
myvar = expr

• Mutating (changing) an object does not change
any variable binding
– Two syntaxes:
left_expr = right_expr
expr.method(args…)

– Examples:
mylist[3] = myvalue
mylist.append(myvalue)

New and old values

• Every expression evaluates to a value

– It might be a new value

– It might be a value that already exists

• A constructor evaluates to a new value

[3, 1, 4, 1, 5, 9]

[3, 1, 4] + [1, 5, 9]

[3, 1, 4, 1, 5, 9]

• An access expression evaluates to an existing value

mylist = [[3, 1], [4, 1]]

mylist[1]

• What does a function call evaluate to?

An aside: List notation

• Possibly misleading notation:

• More accurate, but more verbose, notation:

“four” “score” “and” “seven” “years”

“four” “score” “and” “seven” “years”

“four” “score” “and” “seven” “years”

Object identity

• An object’s identity never changes

• Its value (the thing it represents) may change

mylist = [1, 2, 3]

otherlist = mylist

mylist.append(4)

mylist is otherlist ⇒ True

mylist == [1, 2, 3, 4]⇒ True

mylist is [1, 2, 3, 4]⇒ False

The object identity test “is” is rarely used

Object type and variable type

• An object’s type never changes

• A variable can get rebound to a value of a

different type

• A type indicates:

– what operations are allowed

– the set of representable values

Aside: how did tuples get their name?

• singleton

• pair

• double

• triple

• quadruple

• quintuple

• sextuple

• septuple

• octuple

• nonuple

• decuple

Notice that the last 5

letters in these words

are always tuple

New datatype: tuple

A tuple represents an ordered sequence of values

Example:

“four” “score” “and” “seven” “years”

tuple

“four” “score” “and” “seven” “years”

“four” “score” “and” “seven” “years”

tuple

Tuple operations

Constructors

– Literals: Just like lists, but round the square
brackets

("four", "score", "and", "seven", "years")

– Also (3, 1) + (4, 1) => (3, 1, 4, 1), etc.

Queries

– Just like lists

Mutators

– None!

Immutable datatype

• An immutable datatype is one that doesn’t have

any functions in the third category:

– Constructors

– Queries

– Mutators: None!

• Immutable datatypes:

– int, float, boolean, string, function, tuple, frozenset

• Mutable datatypes:

– list, dictionary, set

Not every value may be placed in a set

• Set elements must be immutable values

– int, float, bool, string, tuple

– not: list, set, dictionary

• Goal: only set operations change the set

– after “myset.add(x)”, x in myset⇒ True

– y in myset always evaluates to the same value

Both conditions should hold until myset is changed

• Mutable elements can violate these goals
list1 = ["a", "b"]

list2 = list1

list3 = ["a", "b"]

myset = { list1 } ⇐ Hypothetical; actually illegal in Python

list1 in myset ⇒ True

list3 in myset ⇒ True

list2.append("c")

list1 in myset ⇒ ???

list3 in myset ⇒ ???

Not every value is allowed to be a key

• Keys must be immutable values

– int, float, bool, string, tuple

– not: list, set, dictionary

• Goal: only dictionary operations change the keyset

– after “mydict[x] = y”, mydict[x]⇒ y

– if a == b, then mydict[a] == mydict[b]

These conditions should hold until mydict is changed

• Mutable keys can violate these goals
list1 = ["a", "b"]

list2 = list1

list3 = ["a", "b"]

mydict = {}

mydict[list1] = "z" ⇐ Hypothetical; actually illegal in Python

mydict[list3] ⇒ "z"

list2.append("c")

mydict[list1] ⇒ ???

mydict[list3] ⇒ ???

Python’s Data Model

• Everything is an object

• Each object has:
– an identity

• Never changes

• Test with is (but you rarely need to do so)

– a type
• Never changes

– a value
• Can change for mutable objects

• Cannot change for immutable objects

• Test with ==

Identity

>>> A = [1]

>>> B = [1]

>>> A == B

True

>>> A is B

False

>>> C = A

>>> A is C

????

>>> A = [1]

>>> B = [1]

>>> A == B

True

>>> A is B

False

>>> conjugations = {

“see”:[“saw”, “sees”],

“walk”:[”walked”, “walks”]

“do”:[”did”, “does”]

“be”:[“was”, “is”]

}

>>> conjugations[“see”]

???

>>> conjugations[“walk”][1]

???

>>> conjugations[“walk”][1][0]

???

>>> [word[0] for word in conjugations[“be”]]

???

>>> [pair for pair in conjugations.items()][0]

???

>>> [(pair[0][0], pair[1][0][0]) for pair in conjugations.items()][1]

???

>>> {pair[0]:pair[1] for pair in conjugations.items()}

???

Mutable and Immutable Types

>>> def increment(uniquewords, word):

... “““increment the count for word”””

... uniquewords[word] = uniquewords.setdefault(word, 1) + 1

>>> mywords = dict()

>>> increment(mywords, “school”)

>>> print mywords

{'school': 2}

>>> def increment(value):

... “““increment the value???”””

... value = value + 1

>>> myval = 5

>>> increment(myval)

>>> print myval

5

Tuples are immuatble

Lists are mutable

def updaterecord(record, position, value):

“““change the value at the given position”””

record[position] = value

mylist = [1,2,3]

mytuple = (1,2,3)

updaterecord(mylist, 1, 10)

print mylist

updaterecord(mytuple, 1, 10)

print mytuple

Mutable and Immutable Types

• Immutable

– numbers, strings, tuples

• Mutable

– lists and dictionaries

Note: a set is mutable, but a frozenset is immutable

Mutable and Immutable Types

>>> def increment(uniquewords, word):

... “““increment the count for word”””

... uniquewords[word] = uniquewords.setdefault(word, 1) + 1

>>> mywords = dict()

>>> increment(mywords, “school”)

>>> print mywords

{'school': 2}

>>> def increment(value):

... “““increment the value???”””

... value = value + 1

>>> myval = 5

>>> increment(myval)

>>> print myval

5

