
Sets

Michael Ernst

CSE 140

University of Washington

Sets

• Mathematical set: a collection of values, without
duplicates or order

• Order does not matter

{ 1, 2, 3 } == { 3, 2, 1 }

• No duplicates

{ 3, 1, 4, 1, 5 } == { 5, 4, 3, 1 }

• For every data structure, ask:

– How to create

– How to query (look up) and perform other operations

• (Can result in a new set, or in some other datatype)

– How to modify

Answer: http://docs.python.org/2/library/stdtypes.html#set

3

2

1

1

4

3

5

Two ways to create a set

1. Direct mathematical syntax

odd = { 1, 3, 5 }

prime = { 2, 3, 5 }

Cannot express empty set: “{}” means something else �

2. Construct from a list

odd = set([1, 3, 5])

prime = set([2, 3, 5])

empty = set([])

Python always prints using this syntax

Set operations

odd = { 1, 3, 5 }

prime = { 2, 3, 5 }

• membership ∈ Python: in 4 in prime ⇒ False

• union ∪ Python: | odd | prime ⇒ { 1, 2, 3, 5 }

• intersection ∩ Python: & odd & prime ⇒ { 3, 5 }

• difference \ or - Python: - odd – prime ⇒ { 1 }

• Iteration over sets:
iterates over items in arbitrary order

for item in myset:

…

• Think in terms of set operations,
not in terms of iteration and element operations
– Shorter, clearer, less error-prone, faster

Modifying a set

• Add one element to a set:
myset.add(newelt)

myset = myset | { newelt }

• Remove one element from a set:
myset.remove(elt) # elt must be in myset

myset.discard(elt) # never errs

myset = myset - { elt }

What would this do?

myset = myset - elt

• Choose and remove some element from a set:
myset.pop()

Practice with sets

List vs. set operations (1)

Find the common elements in both list1 and list2:

out1 = []

for i in list2:

if i in list1:

out1 .append(i)

We will learn about list comprehensions later

out1 = [i for i in list2 if i in list1]

Find the common elements in both set1 and set2:

set1 & set2

Much shorter, clearer, easier to write!

List vs. set operations (2)

Find the elements in either list1 or list2 (or both):

out2 = list(list1) # make a copy

for i in list2:

if i not in list1:

out2.append(i)

out2 = list1+list2

for i in out1: # out1 = common elements in both lists

out2.remove(i)

Find the elements in either set1 or set2 (or both):

set1 | set2

List vs. set operations (3)

Find the elements in either list but not in both:

out3 = []

for i in list1+list2:

if i not in list1 or i not in list2:

out3.append(i)

Find the elements in either set but not in both:

set1 ^ set2

Not every value may be placed in a set

• Set elements must be immutable values
– int, float, bool, string, tuple

– not: list, set, dictionary

• Goal: only set operations change the set
– after “myset.add(x)”, x in myset⇒ True

– y in myset always evaluates to the same value

Both conditions should hold until myset is changed

• Mutable elements can violate these goals
list1 = ["a", "b"]

list2 = list1

list3 = ["a", "b"]

myset = { list1 } ⇐ Hypothetical; actually illegal in Python

list1 in myset ⇒ True

list3 in myset ⇒ True

list2.append("c")

list1 in myset ⇒ ???

list3 in myset ⇒ ???

