
File I/O

Michael Ernst

UW CSE 140

Winter 2013

File Input and Output

• As a programmer, when would one use a file?

• As a programmer, what does one do with a file?

Files store information

when a program is not running

Important operations:

• open a file

• close a file

• read data

• write data

Files and filenames

• A file object represents data on your disk drive

– Can read from it and write to it

• A filename (usually a string) states where to find

the data on your disk drive

– Can be used to find/create a file

– Examples:
• "/home/mernst/class/140/lectures/file_io.pptx"

• "C:\Users\mernst\My Documents\cute_cat.gif"

• "lectures/file_io.pptx"

• "cute_cat.gif"

Read a file in python

Open takes a filename and returns a file.
This fails if the file cannot be found & opened.
myfile = open("datafile.dat")

Approach 1:
for line_of_text in myfile:

… process line_of_text

Approach 2:
all_data_as_a_big_string = myfile.read()

Assumption: file is a sequence of lines

Where does Python expect to find this file (note the relative pathname)?

Two types of filename

• An Absolute filename gives a specific location on disk:
"/home/mernst/class/140/13wi/lectures/file_io.pptx"
or "C:\Users\mernst\My Documents\cute_cat.gif"
– Starts with “/” (Unix) or “C:\” (Windows)

– Warning: code will fail to find the file if you move/rename
files or run your program on a different computer

• A Relative filename gives a location relative to the
current working directory:
"lectures/file_io.pptx" or "cute_cat.gif"
– Warning: code will fail to find the file unless you run your

program from a directory that contains the given contents

• A relative filename is usually a better choice

“Current Working Directory” in Python

The directory from which you ran Python

To determine it from a Python program:

>>> import os # "os" stands for "operating system"

>>> os.getcwd()

'/Users/johndoe/Documents'

Can be the source of confusion: where are my files?

Reading a file multiple times
You can iterate over a list as many times as you like:

mylist = [3, 1, 4, 1, 5, 9]

for elt in mylist:

… process elt

for elt in mylist:

… process elt

Iterating over a file uses it up:

myfile = open("datafile.dat")

for line_of_text in myfile:

… process line_of_text

for line_of_text in myfile:

… process line_of_text # This loop body will never be executed!

Solution 1: Read into a list, then iterate over it

myfile = open("datafile.dat")

mylines = []

for line_of_text in myfile:

mylines.append(line_of_text)

… use mylines

Solution 2: Re-create the file object (slower, but a better choice if the file does not fit in memory)

myfile = open("datafile.dat")

for line_of_text in myfile:

… process line_of_text

myfile = open("datafile.dat")

for line_of_text in myfile:

… process line_of_text

Writing to a file in python

Replaces any existing file of this name

myfile = open("output.dat", "w")

Just like printing output

myfile.write("a bunch of data")

myfile.write("a line of text\n")

myfile.write(4)

myfile.write(str(4))

open for Writing

(no argument, or

"r", for Reading)

“\n” means

end of line

(Newline)

Wrong; results in:
TypeError: expected a character buffer object

Right. Argument

must be a string

