
The Python interpreter

CSE 140

University of Washington

Michael Ernst

Two ways to run Python

• The Python interpreter

– You type one expression at a time

– The interpreter evaluates the expression and prints its
value

• Running a Python program

– Python evaluates all the statements in the file, in
order

– Python does not print their values (but does execute
print statements)

• Writing an expression outside a statement (assignment,
print, etc.) is useless, unless it is a function call that has a
side effect

The Python interpreter

The interpreter is a loop that does:

– Read an expression

– Evaluate the expression

– Print the result

If the result is None, the interpreter does not print it

This inconsistency can be confusing!

(Jargon: An interpreter is also called a “read-
eval-print loop”, or a REPL)

How to launch the Python interpreter

Two ways to launch the interpreter:
– Run IDLE; the interpreter is called the “Python shell”

– Type python at the operating system command line
• Type exit() to return to the operating system command line

These are not the same:

• Operating system command line, or “shell” or “command
prompt” (cmd.exe under Windows) or “terminal”
– Runs programs (Python, others), moves around the file system

– Does not understand Python code like 1+2 or x = 22

• Python interpreter
– Executes Python statements and expressions

– Does not understand program names like python or cd

Running a Python program

• Python evaluates each statement one-by-one

• Python does no extra output, beyond print
statements in the program

• Two ways to run a program:

– While editing a program within IDLE, press F5 (menu
item “Run >> Run Module”)

• Must save the program first, if it is modified

– Type at operating system command line:
python myprogram.py

Python interpreter vs. Python program

• Running a Python file as a program gives different results
from pasting it line-by-line into the interpreter
– The interpreter prints more output than the program would

• In the Python interpreter, evaluating a top-level expression
prints its value
– Evaluating a sub-expression generally does not print any output

– The interpreter does not print a value for an expression that
evaluates to None
• This is primarily code that is executed for side effect: assignments,

print statements, calls to “non-fruitful” functions

• In a Python program, evaluating an expression generally
does not print any output

Side effects vs. results

• Some Python code is executed because it has a useful value
(72 – 32) * 5.0 / 9

math.sqrt(3*3 + 4*4)

• Some Python code is executed because it has a side effect
print “hello”

x = 22

• A function (call) can be of either variety
– Think Python calls a function that returns a value a “fruitful

function”

– A function that only prints some text is non-fruitful

– A function should either return a value, or have a side effect
• It is bad style for a function to do both

– Printing a value is completely different from returning it

• When the code is executed for side effect, its value is None

