UW CSE 190p Section

8/9, Summer 2012
Dun-Yu Hsiao
Outlines

• Data Abstraction

• Course Review

• Questions
Data Abstraction

• Representing the essential features of something without including background or inessential detail.

• The process of deciding which parts of the implementation that should be hidden.
Ex1-Plotting Points

• Given points data (‘euclidean’, x, y) in a text file, you want to plot the points:
 – Save each point as a tuple
 – Make all the points as a list
 – Print all the points
 – Plot them

• What are the necessary functions?
Plotting Points

• Now the supplied input file changes its format, (‘euclidean’, x, y) \(\rightarrow\) (‘polar’, r, theta)

• Which part of the code will break?
Plotting Points

• Modify your code to accept the new type of data.

• Note how many parts you need to change!
Plotting Points

- Now says your clients take the point data and implement the plot function by themselves.
- You don’t want to bother them every time the input format is changed.
- Can we reduce the amount of modification?
- Evaluate the necessary components of each function.
- What data can be abstract to concept?
Plotting Points

• Now the data format changes again:
 (‘polar’, r, theta) → (color, ‘polar’, r, theta)

• Modify your code to accept the new type of data.

• Note how many parts you need to change!
Ex2-Fraction Operation

• Input: tuples of (n,d)
• You want to implement some basic fraction operation such as plus, product, and equal.

• How would you plan the data and function to increase maintainability?
Course Review

• Manipulation with basic data types:
 – List, set, dictionary, number
• List slice and comprehension
• Integer/floating point calculation
• If, for, function
• English to code
• Sequence of expression evaluation
• Visualize stack environment
• How do you test the program?
import math

import numpy as np

data = [1, 2, 3, 4, 3, 2, 3, 4]
def mean (input):
 return sum(input)/float(len(input))

def sqr (x):
 return x*x

def std(input):
 m = mean(input)
 var = [sqr(i-m) for i in input]
 return math.sqrt(sum(var)/float(len(var)))

mean(data)
std(data)
assert std(data) == np.std(data)
Questions?