

Introduction to Image Processing and Python: Pixel Representation

Pixel Representation

Steven L. Tanimoto

Intro. to Image Proc. & Python © S. Tanimoto

Pixel Representation

1

- Representing pixels in PixelMath and other Imaging Systems
- Binary Numbers
- Converting to/from decimal
- Bits and Bytes and how binary numbers represent information
- Direct RGB color representation
- Indexed color representation

The binary number system (or base 2) uses one binary digit ("bit") for each power of 2 in some range of powers, say 2° to 27.

Decimal Binary 0 0 1 1 2 10 3 11

Decimal	Binary
4	100
5	101
6	110
7	111
8	1000
9	1001
10	1010
11	1011
12	1100
13	1101
14	1110
15	1111

Intro. to Image Proc. & Python © S. Tanimoto

Pixel Representation

Pixel Values in Binary

Decimal	Binary
0	00000000
1	0000001
100	01100100
127	01111111
128	1000000
254	11111110
255	111111111

Intro. to Image Proc. & Python © S. Tanimoto

Decimal	Binary
0	00000000
1	0000001
100	01100100
127	01111111
128	10000000
254	11111110
255	1111111 <mark>1</mark>

Bits are ordered from right to left by increasing "significance".

The rightmost bit of a number is its least significant bit

What are the decimal values of these binary numbers?

$$11_2 = 3_{10}$$

$$101_2 = ?$$

 $1000_2 = ?$

$$11000_2 = ?$$

 $1000001_2 = ?$

Intro. to Image Proc. & Python © S. Tanimoto

Pixel Representation

7

A bit is one binary digit. (Either 0 or 1). It can represent a choice between two possibilities. on vs off, even or odd, heads or tails, male or female, older than 21 vs younger, presence of something vs its absence.

A byte consists of 8 bits, and so it can represent 8 such choices. E.g., 10011101 ↔ HTTHHHTH

Describing the bits of a binary number

Since each bit of a binary number represents a power of two, we can number the bits using the exponents of those powers.

Consider the binary number 10110_2 .

Binary number:	1	0	1	1	0
Powers of 2:	24	2 ³	2 ²	2 ¹	20
position number:	4	3	2	1	0
place value:	16	8	4	2	1
Contribution:	16	0	4	2	0
Total: 22					

Color Pixels with Direct RGB representation

Each pixel is represented by 3 values: Red: a number between 0 and 255, inclusive Green: """"""""""""

It takes one byte to represent each value. Thus each pixel is represented by 3 bytes or _____ bits.

This means there are 2²⁴ possible colors for a pixel in the 24-bit color system. This is 16,777,216 colors!

Intro. to Image Proc. & Python © S. Tanimoto

10

An Alternative:

Each pixel is represented by only one byte, but this is not an RGB value but a "color index". It is a number that tells what row to look at in a table of colors. If there are not very many table entries, this method can be efficient.

Pixel v	alue: 2	
Table:		
index	R,G,B	description
0:	0, 0, 0	(black)
1:	255,0,0	(red)
2:	127,0,255	(purple)
3:	255,255,255	(white)

GIF (graphics interchange format) uses this method and limits the table size to 256, so that each index can be represented by one byte.