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Announcements

• Quiz 1 Tuesday (Feb 10)!
- Topics: ListNodes, LinkedIntList, Runtime analysis

- Topics not on Quiz: Recursion

- Practice quiz and reference sheet for Quiz 1 will be posted soon! 

- Quiz 0 feedback will be released before Quiz 1

• Programming Assignment 1 due in one week (Feb 11) @ 11:59pm

• Creative Project 1 and Resubmission Cycle 1 grades released today

• Resubmission Period 2 closes this Friday (Feb 6) @ 11:59pm
- Available assignments: C0, P0, C1

- Last opportunity to resubmit C0
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Method Calls
• Regardless how you use them, methods work the same way!

- Pause execution, finish method, return where you left off

• How does Java keep track of the prior method?
- Sort of like the "history" of the method calls it has paused… (LIFO)
- Something called the Call Stack
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Call Stack

public static void mystery2() {
    System.out.println(“Two”);
    mystery3();
}

public static void mystery3() {
    System.out.println(“Three”);
}

public static void main(String[] args) {
    mystery1();
    mystery2();
}

public static void mystery1() {
    System.out.println(“One”);
}

main()bottom

top

Call Stack

Console:
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Recursion (1)

“The repeated application of a recursive procedure or definition”
- Oxford Languages

• Real-world definition: defining a problem in terms of itself
- Case in point: above definition

- Further natural examples:
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Recursion (2)

“The repeated application of a recursive procedure or definition”
- Oxford Languages

• Real-world definition: defining a problem in terms of itself
- Case in point: above definition

- Further natural examples:
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Recursion (3)

“The repeated application of a recursive procedure or definition”
- Oxford Languages

• Real-world definition: defining a problem in terms of itself
- Case in point: above definition

• Computer science definition: when a method calls itself
- “Alternative” to iteration (can combine for powerful results)
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Recursion (4)

“The repeated application of a recursive procedure or definition”
- Oxford Languages

• Why do we care? 
- It's a fundamental Computer Science topic 

- Some things are easier to describe with recursion than with loops 

- There are some problems that lend themselves more easily to a recursive 
solution than an iterative (loop-y) solution 

- Though all problems that can be solved with recursion can be solved with loops, and vice 
versa
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Method Calls
• Regardless how you use them, methods work the same way!

- Pause execution, finish method, return where you left off

• How does Java keep track of the prior method (LIFO)?
- Something called the Call Stack

 Wouldn’t that just lead to an infinite loop?

public static void recursion() {
    System.out.println(“Woah”);
    recursion();
}

bottom

top

Call Stack

recursion()

...

recursion()

recursion()

recursion()

recursion()

recursion()

recursion()

main()
StackOverflowException!
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Method Calls
• Regardless how you use them, methods work the same way!

- Pause execution, finish method, return where you left off

• How does Java keep track of the prior method (LIFO)?
- Something called the Call Stack

 Wouldn’t that just lead to an infinite loop?
- Yes! We get something called a StackOverflowException

• How do we avoid infinite recursion?
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Recursive Methods
• 2 components of every recursive method:

• Recursive case
- Decompose problem into subproblem

- Make the actual recursive call

- Combine results meaningfully

• Base case
- Simplest version of the problem

- No subproblems to break into

- Return known answer
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Recursive Methods
• 2 components of every recursive method:

• Recursive case
- Decompose problem into subproblem

- Make the actual recursive call

- Combine results meaningfully

• Base case
- Simplest version of the problem

- No subproblems to break into

- Return known answer

If decomposing moves you closer to the base, no infinite recursion!
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Math Examples

n! or factorial(n) = product of all positive integers <= n

• Two ways of viewing this idea:

• 𝑛! = 𝑛 ∗ 𝑛 − 1 ∗ 𝑛 − 2 ∗ ⋯∗ 2 ∗ 1
- Iterative approach - loop through all values and multiply together

• 𝑛! = 𝑛 ∗ 𝑛 − 1 !
- Recursive approach – decompose into subproblem and combine

- What would our base case / simplest input (𝑛) be?
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Math Examples

n! / factorial(n) = product of all positive integers <= n

• Reminder, recursive approach: 𝑛! = 𝑛 ∗ 𝑛 − 1 !
- Let’s trace through with a simple example

4! = 4 ∗ 3! 2! = 2 ∗ 1! 1! = 1 ∗ 0! 0! = 13! = 3 ∗ 2!
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Math Examples

n! / factorial(n) = product of all positive integers <= n

• Reminder, recursive approach: 𝑛! = 𝑛 ∗ 𝑛 − 1 !
- Let’s trace through with a simple example

4! = 4 ∗ 3! 2! = 2 ∗ 1! 1! = 1 ∗ 13! = 3 ∗ 2!
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Math Examples

n! / factorial(n) = product of all positive integers <= n

• Reminder, recursive approach: 𝑛! = 𝑛 ∗ 𝑛 − 1 !
- Let’s trace through with a simple example
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Math Examples

n! / factorial(n) = product of all positive integers <= n

• Reminder, recursive approach: 𝑛! = 𝑛 ∗ 𝑛 − 1 !
- Let’s trace through with a simple example

4! = 4 ∗ 3! 2! = 23! = 3 ∗ 2!
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Math Examples

n! / factorial(n) = product of all positive integers <= n

• Reminder, recursive approach: 𝑛! = 𝑛 ∗ 𝑛 − 1 !
- Let’s trace through with a simple example

4! = 4 ∗ 3! 3! = 3 ∗ 2
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Math Examples

n! / factorial(n) = product of all positive integers <= n

• Reminder, recursive approach: 𝑛! = 𝑛 ∗ 𝑛 − 1 !
- Let’s trace through with a simple example

4! = 4 ∗ 3! 3! = 6
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Math Examples

n! / factorial(n) = product of all positive integers <= n

• Reminder, recursive approach: 𝑛! = 𝑛 ∗ 𝑛 − 1 !
- Let’s trace through with a simple example

4! = 4 ∗ 6
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Math Examples

n! / factorial(n) = product of all positive integers <= n

• Reminder, recursive approach: 𝑛! = 𝑛 ∗ 𝑛 − 1 !
- Let’s trace through with a simple example

4! = 24



CSE 123 Winter 2026LEC 08: Recursion

Lecture Outline

• Announcements
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