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Announcements

* Quiz 1 Tuesday (Feb 10)!

- Topics: ListNodes, LinkedIntList, Runtime analysis

- Topics not on Quiz: Recursion

- Practice quiz and reference sheet for Quiz 1 will be posted soon!
- Quiz 0 feedback will be released before Quiz 1

* Programming Assignment 1 due in one week (Feb 11) @ 11:59pm
* Creative Project 1 and Resubmission Cycle 1 grades released today

e Resubmission Period 2 closes this Friday (Feb 6) @ 11:59pm

- Available assignments: €O, PO, C1
- Last opportunity to resubmit CO
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Method Calls

* Regardless how you use them, methods work the same way!
- Pause execution, finish method, return where you left off

 How does Java keep track of the prior method?
- Sort of like the "history" of the method calls it has paused... (LIFO)
- Something called the Call Stack
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Call Stack

Call Stack

top

bottom main()

public static void main(String[] args) {

¥

mysteryl();
mystery2();

public static void mysteryl() {

¥

System.out.println(“One”);
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Console:

public static void mystery2() {

¥

System.out.println(“Two”);
mystery3();

public static void mystery3() {

¥

System.out.println(“Three”);
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Recursion (1)

“The repeated application of a recursive procedure or definition”
- Oxford Languages

* Real-world definition: defining a problem in terms of itself
- Case in point: above definition
- Further natural examples:
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Recursion (2)

“The repeated application of a recursive procedure or definition”

- Oxford Languages

* Real-world definition: defining a problem in terms of itself
- Case in point: above definition
- Further natural examples:
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Recursion (3)

“The repeated application of a recursive procedure or definition”

- Oxford Languages

* Real-world definition: defining a problem in terms of itself
- Case in point: above definition

 Computer science definition: when a method calls itself
- “Alternative” to iteration (can combine for powerful results)
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Recursion (4)

“The repeated application of a recursive procedure or definition”

- Oxford Languages

* Why do we care?
- It's a fundamental Computer Science topic
- Some things are easier to describe with recursion than with loops

- There are some problems that lend themselves more easily to a recursive
solution than an iterative (loop-y) solution

- Though all problems that can be solved with recursion can be solved with loops, and vice
versa
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Method Calls

CSE 123 Winter 2026

stackoverflow
* Regardless how you use them, methods work the same way!
- Pause execution, finish method, return where you left off

 How does Java keep track of the prior method (LIFO)?
- Something called the Call Stack
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main()
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Method Calls

* Regardless how you use them, methods work the same way!
- Pause execution, finish method, return where you left off

 How does Java keep track of the prior method (LIFO)?
- Something called the Call Stack

£ Wouldn’t that just lead to an infinite loop?
- Yes! We get something called a StackOverflowException

* How do we avoid infinite recursion?
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Recursive Methods

e 2 components of every recursive method:

e Recursive case

- Decompose problem into subproblem
- Make the actual recursive call
- Combine results meaningfully

* Base case

- Simplest version of the problem
- No subproblems to break into
- Return known answer
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Recursive Methods

e 2 components of every recursive method:

* Recursive case
- Decompose problem into subproblem
- Make the actual recursive call
- Combine results meaningfully

* Base case
- Simplest version of the problem
- No subproblems to break into
- Return known answer

If decomposing moves you closer to the base, no infinite recursion!
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Math Examples

n!or factorial(n) = product of all positive integers <= n

* Two ways of viewing this idea:

'nl=n+xn—1)*xn—2)*--*2x1

- Iterative approach - loop through all values and multiply together

‘nl=n*xMn-—1)
- Recursive approach —decompose into subproblem and combine
- What would our base case / simplest input (n) be?
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Math Examples

n! / factorial(n) = product of all positive integers <= n

* Reminder, recursive approach: n! =n*(n—1)!
- Let’s trace through with a simple example

4! = 4 x 3! 3l =3 % 2! 2!

1
DN
*
p—
—
1
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Math Examples
n! / factorial(n) = product of all positive integers <= n

* Reminder, recursive approach: n! =n*(n—1)!
- Let’s trace through with a simple example

41=4%31 31=3%21 20=2%1 1'=1%0 0
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Math Examples

n! / factorial(n) = product of all positive integers <= n

* Reminder, recursive approach: n! =n*(n—1)!
- Let’s trace through with a simple example
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Math Examples

n! / factorial(n) = product of all positive integers <= n

* Reminder, recursive approach: n! =n*(n—1)!
- Let’s trace through with a simple example

4! = 4 x 3! 3! =3 x 2! 2! =2+ 1! 11=1
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Math Examples

n! / factorial(n) = product of all positive integers <= n

* Reminder, recursive approach: n! =n*(n—1)!
- Let’s trace through with a simple example

4! = 4 % 3 31 = 3 x 2| 2! =2 %1
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Math Examples

n! / factorial(n) = product of all positive integers <= n

* Reminder, recursive approach: n! =n*(n—1)!
- Let’s trace through with a simple example

41'=4%31 31 =3x%2 21 =2
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Math Examples

n! / factorial(n) = product of all positive integers <= n

* Reminder, recursive approach: n! =n*(n—1)!
- Let’s trace through with a simple example
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Math Examples

n! / factorial(n) = product of all positive integers <= n

* Reminder, recursive approach: n! =n*(n—1)!
- Let’s trace through with a simple example

4! = 4 x 3!
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Math Examples

n! / factorial(n) = product of all positive integers <= n

* Reminder, recursive approach: n! =n*(n—1)!
- Let’s trace through with a simple example

4] =4 % 6
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Math Examples

n! / factorial(n) = product of all positive integers <= n

* Reminder, recursive approach: n! =n*(n—1)!
- Let’s trace through with a simple example

41 = 24
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