WY UNIVERSITY of WASHINGTON LEC 08: Recursion CSE 123 Winter 2026

Talk to your neighbors:

What is your favorite season/weather?

Respond on sli.do!

CSE 123
Recursion

Instructor: Brett Wortzman

TAS: Arohan Jonah Kavya Eeshani Trien
Ashar Brice Misha Aidan Evan
Sean Chris Kieran Cora Rena
Chloe Elden Sahana Dixon Katharine

Raise hand or send here Jenny Ishita Anirudh Nhan Anya

=145]

Nate Kuhu Crystal

slido #csel23

Now playing: 45 CSE 123 26wi Lecture Tunes &

https://open.spotify.com/playlist/0kFSLp6kKEw6GNZDot0pyT?si=ibDFdyI0Qk-Tgtp8ddHrFw

YW UNIVERSITY of WASHINGTON LEC 08: Recursion CSE 123 Winter 2026

Lecture Outline

e Method Calls Review
 Recursion Review

* Recursive Tracing Practice

YW UNIVERSITY of WASHINGTON LEC 08: Recurs ion CSE 123 Winter 2026

Announcements

* Quiz 1 Tuesday (Feb 10)!

- Topics: ListNodes, LinkedIntList, Runtime analysis

- Topics not on Quiz: Recursion

- Practice quiz and reference sheet for Quiz 1 will be posted soon!
- Quiz 0 feedback will be released before Quiz 1

* Programming Assignment 1 due in one week (Feb 11) @ 11:59pm
* Creative Project 1 and Resubmission Cycle 1 grades released today

e Resubmission Period 2 closes this Friday (Feb 6) @ 11:59pm

- Available assignments: €O, PO, C1
- Last opportunity to resubmit CO

YW UNIVERSITY of WASHINGTON LEC 08: Recursion CSE 123 Winter 2026

Lecture Outline

* Announcements

e Recursion Review

* Recursive Tracing Practice

YW UNIVERSITY of WASHINGTON LEC 08: Recursion CSE 123 Winter 2026

Method Calls

* Regardless how you use them, methods work the same way!
- Pause execution, finish method, return where you left off

 How does Java keep track of the prior method?
- Sort of like the "history" of the method calls it has paused... (LIFO)
- Something called the Call Stack

W UNIVERSITY of WASHINGTON LEC 08: Recursion

Call Stack

Call Stack

top

bottom main()

public static void main(String[] args) {

¥

mysteryl();
mystery2();

public static void mysteryl() {

¥

System.out.println(“One”);

CSE 123 Winter 2026

Console:

public static void mystery2() {

¥

System.out.println(“Two”);
mystery3();

public static void mystery3() {

¥

System.out.println(“Three”);

W UNIVERSITY of WASHINGTON LEC 08: Recursion

Call Stack

Call Stack

top

bottom main()

public static void main(String[] args) {

¥

mysteryl();
mystery2();

public static void mysteryl() {

¥

System.out.println(“One”);

CSE 123 Winter 2026

Console:

public static void mystery2() {

¥

System.out.println(“Two”);
mystery3();

public static void mystery3() {

¥

System.out.println(“Three”);

W UNIVERSITY of WASHINGTON LEC 08: Recursion

Call Stack

Call Stack
top
mysteryl()
bottom main()

public static void main(String[] args) {

¥

mysteryl();
mystery2();

public static void mysteryl() {

¥

System.out.println(“One”);

CSE 123 Winter 2026

Console:

public static void mystery2() {

¥

System.out.println(“Two”);
mystery3();

public static void mystery3() {

¥

System.out.println(“Three”);

W UNIVERSITY of WASHINGTON LEC 08: Recursion

Call Stack

Call Stack
top
mysteryl()
bottom main()

public static void main(String[] args) {

¥

mysteryl();
mystery2();

public static void mysteryl() {

¥

System.out.println(“One”);

CSE 123 Winter 2026

Console:

One

public static void mystery2() {

¥

System.out.println(“Two”);
mystery3();

public static void mystery3() {

¥

System.out.println(“Three”);

W UNIVERSITY of WASHINGTON LEC 08: Recursion

Call Stack

Call Stack

top

bottom main()

public static void main(String[] args) {

¥

mysteryl();
mystery2();

public static void mysteryl() {

¥

System.out.println(“One”);

CSE 123 Winter 2026

Console:

One

public static void mystery2() {

¥

System.out.println(“Two”);
mystery3();

public static void mystery3() {

¥

System.out.println(“Three”);

W UNIVERSITY of WASHINGTON LEC 08: Recursion

Call Stack

Call Stack

top

bottom main()

public static void main(String[] args) {

¥

mysteryl();
mystery2();

public static void mysteryl() {

¥

System.out.println(“One”);

CSE 123 Winter 2026

Console:

One

public static void mystery2() {

¥

System.out.println(“Two”);
mystery3();

public static void mystery3() {

¥

System.out.println(“Three”);

W UNIVERSITY of WASHINGTON LEC 08: Recursion

Call Stack

Call Stack
top
mystery2()
bottom main()

public static void main(String[] args) {

¥

mysteryl();
mystery2();

public static void mysteryl() {

¥

System.out.println(“One”);

CSE 123 Winter 2026

Console:

One

public static void mystery2() {

¥

System.out.println(“Two”);
mystery3();

public static void mystery3() {

¥

System.out.println(“Three”);

W UNIVERSITY of WASHINGTON LEC 08: Recursion

Call Stack

Call Stack
top
mystery2()
bottom main()

public static void main(String[] args) {

¥

mysteryl();
mystery2();

public static void mysteryl() {

¥

System.out.println(“One”);

CSE 123 Winter 2026

Console:

One
Two

public static void mystery2() {

¥

System.out.println(“Two”);
mystery3();

public static void mystery3() {

¥

System.out.println(“Three”);

W UNIVERSITY of WASHINGTON LEC 08: Recursion

Call Stack

Call Stack
top
mystery2()
bottom main()

public static void main(String[] args) {

¥

mysteryl();
mystery2();

public static void mysteryl() {

¥

System.out.println(“One”);

CSE 123 Winter 2026

Console:

One
Two

public static void mystery2() {

¥

System.out.println(“Two”);
mystery3();

public static void mystery3() {

¥

System.out.println(“Three”);

W UNIVERSITY of WASHINGTON LEC 08: Recursion

Call Stack

Call Stack
top
mystery3()
mystery2()
bottom main()

public static void main(String[] args) {

¥

mysteryl();
mystery2();

public static void mysteryl() {

¥

System.out.println(“One”);

CSE 123 Winter 2026

Console:

One
Two

public static void mystery2() {

¥

System.out.println(“Two”);
mystery3();

public static void mystery3() {

¥

System.out.println(“Three”);

W UNIVERSITY of WASHINGTON LEC 08: Recursion

Call Stack

Call Stack
top
mystery3()
mystery2()
bottom main()

public static void main(String[] args) {

¥

mysteryl();
mystery2();

public static void mysteryl() {

¥

System.out.println(“One”);

CSE 123 Winter 2026

Console:

One
Two
Three

public static void mystery2() {

¥

System.out.println(“Two”);
mystery3();

public static void mystery3() {

¥

System.out.println(“Three”);

W UNIVERSITY of WASHINGTON LEC 08: Recursion

Call Stack

Call Stack
top
mystery2()
bottom main()

public static void main(String[] args) {

¥

mysteryl();
mystery2();

public static void mysteryl() {

¥

System.out.println(“One”);

CSE 123 Winter 2026

Console:

One
Two
Three

public static void mystery2() {

¥

System.out.println(“Two”);
mystery3();

public static void mystery3() {

¥

System.out.println(“Three”);

W UNIVERSITY of WASHINGTON LEC 08: Recursion

Call Stack

Call Stack

top

bottom main()

public static void main(String[] args) {

¥

mysteryl();
mystery2();

public static void mysteryl() {

¥

System.out.println(“One”);

CSE 123 Winter 2026

Console:

One
Two
Three

public static void mystery2() {

¥

System.out.println(“Two”);
mystery3();

public static void mystery3() {

¥

System.out.println(“Three”);

W UNIVERSITY of WASHINGTON LEC 08: Recursion

Call Stack

Call Stack

top

bottom

public static void main(String[] args) {
mysteryl();
mystery2();

}

public static void mysteryl() {
System.out.println(“One”);

¥

CSE 123 Winter 2026

Console:

One
Two
Three

public static void mystery2() {
System.out.println(“Two”);
mystery3();

}

public static void mystery3() {
System.out.println(“Three”);

¥

LEC 08: Recursion CSE 123 Winter 2026

YW UNIVERSITY of WASHINGTON

Lecture Outline

* Announcements

e Method Calls Review

* Recursive Tracing Practice

YW UNIVERSITY of WASHINGTON LEC 08: Recursion CSE 123 Winter 2026

Recursion (1)

“The repeated application of a recursive procedure or definition”
- Oxford Languages

* Real-world definition: defining a problem in terms of itself
- Case in point: above definition
- Further natural examples:

W UNIVERSITY of WASHINGTON LEC 08: Recursion CSE 123 Winter 2026

Recursion (2)

“The repeated application of a recursive procedure or definition”

- Oxford Languages

* Real-world definition: defining a problem in terms of itself
- Case in point: above definition
- Further natural examples:

YW UNIVERSITY of WASHINGTON LEC 08: Recursion CSE 123 Winter 2026

Recursion (3)

“The repeated application of a recursive procedure or definition”

- Oxford Languages

* Real-world definition: defining a problem in terms of itself
- Case in point: above definition

 Computer science definition: when a method calls itself
- “Alternative” to iteration (can combine for powerful results)

YW UNIVERSITY of WASHINGTON LEC 08: Recursion CSE 123 Winter 2026

Recursion (4)

“The repeated application of a recursive procedure or definition”

- Oxford Languages

* Why do we care?
- It's a fundamental Computer Science topic
- Some things are easier to describe with recursion than with loops

- There are some problems that lend themselves more easily to a recursive
solution than an iterative (loop-y) solution

- Though all problems that can be solved with recursion can be solved with loops, and vice
versa

YW UNIVERSITY of WASHINGTON

Method Calls

CSE 123 Winter 2026

stackoverflow
* Regardless how you use them, methods work the same way!
- Pause execution, finish method, return where you left off

 How does Java keep track of the prior method (LIFO)?
- Something called the Call Stack

5
% A
A < =1
Q(‘ 2N 0N
A v P
N o) o
o > X
CafoStpgg’l%)/)Q o <
recursion() top
¥~ Wouldn’t that just lead to an infinite loop?
recursion()
. .] . recursion
public static void recursion() { .
System.out.println(“Woah”);
recursion();
}

recursion()

recursion()
StackOverflowException!

recursion()

recursion()

main()

bottom

YW UNIVERSITY of WASHINGTON LEC 08: Recursion CSE 123 Winter 2026

Method Calls

* Regardless how you use them, methods work the same way!
- Pause execution, finish method, return where you left off

 How does Java keep track of the prior method (LIFO)?
- Something called the Call Stack

£ Wouldn’t that just lead to an infinite loop?
- Yes! We get something called a StackOverflowException

* How do we avoid infinite recursion?

YW UNIVERSITY of WASHINGTON LEC 08: Recursion CSE 123 Winter 2026

Recursive Methods

e 2 components of every recursive method:

e Recursive case

- Decompose problem into subproblem
- Make the actual recursive call
- Combine results meaningfully

* Base case

- Simplest version of the problem
- No subproblems to break into
- Return known answer

YW UNIVERSITY of WASHINGTON LEC 08: Recursion CSE 123 Winter 2026

Recursive Methods

e 2 components of every recursive method:

* Recursive case
- Decompose problem into subproblem
- Make the actual recursive call
- Combine results meaningfully

* Base case
- Simplest version of the problem
- No subproblems to break into
- Return known answer

If decomposing moves you closer to the base, no infinite recursion!

YW UNIVERSITY of WASHINGTON LEC 08: Recurs ion CSE 123 Winter 2026

Math Examples

n!or factorial(n) = product of all positive integers <= n

* Two ways of viewing this idea:

'nl=n+xn—1)*xn—2)*--*2x1

- Iterative approach - loop through all values and multiply together

‘nl=n*xMn-—1)
- Recursive approach —decompose into subproblem and combine
- What would our base case / simplest input (n) be?

YW UNIVERSITY of WASHINGTON LEC 08: Recurs ion CSE 123 Winter 2026

Math Examples

n! / factorial(n) = product of all positive integers <= n

* Reminder, recursive approach: n! =n*(n—1)!
- Let’s trace through with a simple example

4! = 4 x 3! 3l =3 % 2! 2!

1
DN
*
p—
—
1

YW UNIVERSITY of WASHINGTON

LEC 08: Recurs ion

CSE 123 Winter 2026

Math Examples
n! / factorial(n) = product of all positive integers <= n

* Reminder, recursive approach: n! =n*(n—1)!
- Let’s trace through with a simple example

41=4%31 31=3%21 20=2%1 1'=1%0 0

W UNIVERSITY of WASHINGTON LEC 08: Recursion CSE 123 Winter 2026

Math Examples

n! / factorial(n) = product of all positive integers <= n

* Reminder, recursive approach: n! =n*(n—1)!
- Let’s trace through with a simple example

W UNIVERSITY of WASHINGTON LEC 08: Recursion CSE 123 Winter 2026

Math Examples

n! / factorial(n) = product of all positive integers <= n

* Reminder, recursive approach: n! =n*(n—1)!
- Let’s trace through with a simple example

4! = 4 x 3! 3! =3 x 2! 2! =2+ 1! 11=1

W UNIVERSITY of WASHINGTON LEC 08: Recursion CSE 123 Winter 2026

Math Examples

n! / factorial(n) = product of all positive integers <= n

* Reminder, recursive approach: n! =n*(n—1)!
- Let’s trace through with a simple example

4! = 4 % 3 31 = 3 x 2| 2! =2 %1

W UNIVERSITY of WASHINGTON LEC 08: Recursion CSE 123 Winter 2026

Math Examples

n! / factorial(n) = product of all positive integers <= n

* Reminder, recursive approach: n! =n*(n—1)!
- Let’s trace through with a simple example

41'=4%31 31 =3x%2 21 =2

YW UNIVERSITY of WASHINGTON LEC 08: Recurs ion CSE 123 Winter 2026

Math Examples

n! / factorial(n) = product of all positive integers <= n

* Reminder, recursive approach: n! =n*(n—1)!
- Let’s trace through with a simple example

YW UNIVERSITY of WASHINGTON LEC 08: Recurs ion CSE 123 Winter 2026

Math Examples

n! / factorial(n) = product of all positive integers <= n

* Reminder, recursive approach: n! =n*(n—1)!
- Let’s trace through with a simple example

4! = 4 x 3!

YW UNIVERSITY of WASHINGTON LEC 08: Recurs ion CSE 123 Winter 2026

Math Examples

n! / factorial(n) = product of all positive integers <= n

* Reminder, recursive approach: n! =n*(n—1)!
- Let’s trace through with a simple example

4] =4 % 6

YW UNIVERSITY of WASHINGTON LEC 08: Recurs ion CSE 123 Winter 2026

Math Examples

n! / factorial(n) = product of all positive integers <= n

* Reminder, recursive approach: n! =n*(n—1)!
- Let’s trace through with a simple example

41 = 24

CSE 123 Winter 2026

W UNIVERSITY of WASHINGTON LEC 08: Recursion

Lecture Outline

* Announcements
e Method Calls Review

e Recursion Review

	Default Section
	Slide 1: Recursion
	Slide 2: Lecture Outline
	Slide 3: Announcements
	Slide 4: Lecture Outline
	Slide 5: Method Calls
	Slide 6: Call Stack
	Slide 7: Call Stack
	Slide 8: Call Stack
	Slide 9: Call Stack
	Slide 10: Call Stack
	Slide 11: Call Stack
	Slide 12: Call Stack
	Slide 13: Call Stack
	Slide 14: Call Stack
	Slide 15: Call Stack
	Slide 16: Call Stack
	Slide 17: Call Stack
	Slide 18: Call Stack
	Slide 19: Call Stack
	Slide 20: Lecture Outline
	Slide 21: Recursion (1)
	Slide 22: Recursion (2)
	Slide 23: Recursion (3)
	Slide 24: Recursion (4)
	Slide 25: Method Calls
	Slide 26: Method Calls
	Slide 27: Recursive Methods
	Slide 28: Recursive Methods
	Slide 29: Math Examples
	Slide 30: Math Examples
	Slide 31: Math Examples
	Slide 32: Math Examples
	Slide 33: Math Examples
	Slide 34: Math Examples
	Slide 35: Math Examples
	Slide 36: Math Examples
	Slide 37: Math Examples
	Slide 38: Math Examples
	Slide 39: Math Examples
	Slide 40: Lecture Outline

