
CSE 123

Questions during Class?
Raise hand or send here

sli.do #cse123

CSE 123 Winter 2026

Talk to your neighbors:

BEFORE WE START

Brett Wortzman

Arohan Jonah Kavya Eeshani Trien

Ashar Brice Misha Aidan Evan

Sean Chris Kieran Cora Rena

Chloe Elden Sahana Dixon Katharine

Jenny Ishita Anirudh Nhan Anya

Nate Kuhu Crystal

CSE 123 26wi Lecture Tunes

Now playing: CSE 123 26wi Lecture Tunes

Instructor:

TAs:

LEC 08: Recursion

LEC 08

Recursion

BEFORE WE START

What is your favorite season/weather?

Respond on sli.do!

https://open.spotify.com/playlist/0kFSLp6kKEw6GNZDot0pyT?si=ibDFdyI0Qk-Tgtp8ddHrFw

CSE 123 Winter 2026LEC 08: Recursion

Lecture Outline

• Announcements

• Method Calls Review

• Recursion Review

• Recursive Tracing Practice

CSE 123 Winter 2026LEC 08: Recursion

Announcements

• Quiz 1 Tuesday (Feb 10)!
- Topics: ListNodes, LinkedIntList, Runtime analysis

- Topics not on Quiz: Recursion

- Practice quiz and reference sheet for Quiz 1 will be posted soon!

- Quiz 0 feedback will be released before Quiz 1

• Programming Assignment 1 due in one week (Feb 11) @ 11:59pm

• Creative Project 1 and Resubmission Cycle 1 grades released today

• Resubmission Period 2 closes this Friday (Feb 6) @ 11:59pm
- Available assignments: C0, P0, C1

- Last opportunity to resubmit C0

CSE 123 Winter 2026LEC 08: Recursion

Lecture Outline

• Announcements

• Method Calls Review

• Recursion Review

• Recursive Tracing Practice

CSE 123 Winter 2026LEC 08: Recursion

Method Calls
• Regardless how you use them, methods work the same way!

- Pause execution, finish method, return where you left off

• How does Java keep track of the prior method?
- Sort of like the "history" of the method calls it has paused… (LIFO)
- Something called the Call Stack

CSE 123 Winter 2026LEC 08: Recursion

Call Stack

public static void mystery2() {
 System.out.println(“Two”);
 mystery3();
}

public static void mystery3() {
 System.out.println(“Three”);
}

public static void main(String[] args) {
 mystery1();
 mystery2();
}

public static void mystery1() {
 System.out.println(“One”);
}

main()bottom

top

Call Stack

Console:

CSE 123 Winter 2026LEC 08: Recursion

Call Stack

public static void mystery2() {
 System.out.println(“Two”);
 mystery3();
}

public static void mystery3() {
 System.out.println(“Three”);
}

public static void main(String[] args) {
 mystery1();
 mystery2();
}

public static void mystery1() {
 System.out.println(“One”);
}

main()bottom

top

Call Stack

Console:

CSE 123 Winter 2026LEC 08: Recursion

Call Stack

public static void mystery2() {
 System.out.println(“Two”);
 mystery3();
}

public static void mystery3() {
 System.out.println(“Three”);
}

public static void main(String[] args) {
 mystery1();
 mystery2();
}

public static void mystery1() {
 System.out.println(“One”);
}

mystery1()

main()bottom

top

Call Stack

Console:

CSE 123 Winter 2026LEC 08: Recursion

Call Stack

public static void mystery2() {
 System.out.println(“Two”);
 mystery3();
}

public static void mystery3() {
 System.out.println(“Three”);
}

public static void main(String[] args) {
 mystery1();
 mystery2();
}

public static void mystery1() {
 System.out.println(“One”);
}

mystery1()

main()bottom

top

Call Stack

Console:

One

CSE 123 Winter 2026LEC 08: Recursion

Call Stack

public static void mystery2() {
 System.out.println(“Two”);
 mystery3();
}

public static void mystery3() {
 System.out.println(“Three”);
}

public static void main(String[] args) {
 mystery1();
 mystery2();
}

public static void mystery1() {
 System.out.println(“One”);
}

main()bottom

top

Call Stack

Console:

One

CSE 123 Winter 2026LEC 08: Recursion

Call Stack

public static void mystery2() {
 System.out.println(“Two”);
 mystery3();
}

public static void mystery3() {
 System.out.println(“Three”);
}

public static void main(String[] args) {
 mystery1();
 mystery2();
}

public static void mystery1() {
 System.out.println(“One”);
}

main()bottom

top

Call Stack

Console:

One

CSE 123 Winter 2026LEC 08: Recursion

Call Stack

public static void mystery2() {
 System.out.println(“Two”);
 mystery3();
}

public static void mystery3() {
 System.out.println(“Three”);
}

public static void main(String[] args) {
 mystery1();
 mystery2();
}

public static void mystery1() {
 System.out.println(“One”);
}

mystery2()

main()bottom

top

Call Stack

Console:

One

CSE 123 Winter 2026LEC 08: Recursion

Call Stack

public static void mystery2() {
 System.out.println(“Two”);
 mystery3();
}

public static void mystery3() {
 System.out.println(“Three”);
}

public static void main(String[] args) {
 mystery1();
 mystery2();
}

public static void mystery1() {
 System.out.println(“One”);
}

mystery2()

main()bottom

top

Call Stack

Console:

One
Two

CSE 123 Winter 2026LEC 08: Recursion

Call Stack

public static void mystery2() {
 System.out.println(“Two”);
 mystery3();
}

public static void mystery3() {
 System.out.println(“Three”);
}

public static void main(String[] args) {
 mystery1();
 mystery2();
}

public static void mystery1() {
 System.out.println(“One”);
}

mystery2()

main()bottom

top

Call Stack

Console:

One
Two

CSE 123 Winter 2026LEC 08: Recursion

Call Stack

public static void mystery2() {
 System.out.println(“Two”);
 mystery3();
}

public static void mystery3() {
 System.out.println(“Three”);
}

public static void main(String[] args) {
 mystery1();
 mystery2();
}

public static void mystery1() {
 System.out.println(“One”);
}

mystery3()

mystery2()

main()bottom

top

Call Stack

Console:

One
Two

CSE 123 Winter 2026LEC 08: Recursion

Call Stack

public static void mystery2() {
 System.out.println(“Two”);
 mystery3();
}

public static void mystery3() {
 System.out.println(“Three”);
}

public static void main(String[] args) {
 mystery1();
 mystery2();
}

public static void mystery1() {
 System.out.println(“One”);
}

mystery3()

mystery2()

main()bottom

top

Call Stack

Console:

One
Two
Three

CSE 123 Winter 2026LEC 08: Recursion

Call Stack

public static void mystery2() {
 System.out.println(“Two”);
 mystery3();
}

public static void mystery3() {
 System.out.println(“Three”);
}

public static void main(String[] args) {
 mystery1();
 mystery2();
}

public static void mystery1() {
 System.out.println(“One”);
}

mystery2()

main()bottom

top

Call Stack

Console:

One
Two
Three

CSE 123 Winter 2026LEC 08: Recursion

Call Stack

public static void mystery2() {
 System.out.println(“Two”);
 mystery3();
}

public static void mystery3() {
 System.out.println(“Three”);
}

public static void main(String[] args) {
 mystery1();
 mystery2();
}

public static void mystery1() {
 System.out.println(“One”);
}

main()bottom

top

Call Stack

Console:

One
Two
Three

CSE 123 Winter 2026LEC 08: Recursion

Call Stack

public static void mystery2() {
 System.out.println(“Two”);
 mystery3();
}

public static void mystery3() {
 System.out.println(“Three”);
}

public static void main(String[] args) {
 mystery1();
 mystery2();
}

public static void mystery1() {
 System.out.println(“One”);
}

bottom

top

Call Stack

Console:

One
Two
Three

CSE 123 Winter 2026LEC 08: Recursion

Lecture Outline

• Announcements

• Method Calls Review

• Recursion Review

• Recursive Tracing Practice

CSE 123 Winter 2026LEC 08: Recursion

Recursion (1)

“The repeated application of a recursive procedure or definition”
- Oxford Languages

• Real-world definition: defining a problem in terms of itself
- Case in point: above definition

- Further natural examples:

CSE 123 Winter 2026LEC 08: Recursion

Recursion (2)

“The repeated application of a recursive procedure or definition”
- Oxford Languages

• Real-world definition: defining a problem in terms of itself
- Case in point: above definition

- Further natural examples:

CSE 123 Winter 2026LEC 08: Recursion

Recursion (3)

“The repeated application of a recursive procedure or definition”
- Oxford Languages

• Real-world definition: defining a problem in terms of itself
- Case in point: above definition

• Computer science definition: when a method calls itself
- “Alternative” to iteration (can combine for powerful results)

CSE 123 Winter 2026LEC 08: Recursion

Recursion (4)

“The repeated application of a recursive procedure or definition”
- Oxford Languages

• Why do we care?
- It's a fundamental Computer Science topic

- Some things are easier to describe with recursion than with loops

- There are some problems that lend themselves more easily to a recursive
solution than an iterative (loop-y) solution

- Though all problems that can be solved with recursion can be solved with loops, and vice
versa

CSE 123 Winter 2026LEC 08: Recursion

Method Calls
• Regardless how you use them, methods work the same way!

- Pause execution, finish method, return where you left off

• How does Java keep track of the prior method (LIFO)?
- Something called the Call Stack

 Wouldn’t that just lead to an infinite loop?

public static void recursion() {
 System.out.println(“Woah”);
 recursion();
}

bottom

top

Call Stack

recursion()

...

recursion()

recursion()

recursion()

recursion()

recursion()

recursion()

main()
StackOverflowException!

CSE 123 Winter 2026LEC 08: Recursion

Method Calls
• Regardless how you use them, methods work the same way!

- Pause execution, finish method, return where you left off

• How does Java keep track of the prior method (LIFO)?
- Something called the Call Stack

 Wouldn’t that just lead to an infinite loop?
- Yes! We get something called a StackOverflowException

• How do we avoid infinite recursion?

CSE 123 Winter 2026LEC 08: Recursion

Recursive Methods
• 2 components of every recursive method:

• Recursive case
- Decompose problem into subproblem

- Make the actual recursive call

- Combine results meaningfully

• Base case
- Simplest version of the problem

- No subproblems to break into

- Return known answer

CSE 123 Winter 2026LEC 08: Recursion

Recursive Methods
• 2 components of every recursive method:

• Recursive case
- Decompose problem into subproblem

- Make the actual recursive call

- Combine results meaningfully

• Base case
- Simplest version of the problem

- No subproblems to break into

- Return known answer

If decomposing moves you closer to the base, no infinite recursion!

CSE 123 Winter 2026LEC 08: Recursion

Math Examples

n! or factorial(n) = product of all positive integers <= n

• Two ways of viewing this idea:

• 𝑛! = 𝑛 ∗ 𝑛 − 1 ∗ 𝑛 − 2 ∗ ⋯∗ 2 ∗ 1
- Iterative approach - loop through all values and multiply together

• 𝑛! = 𝑛 ∗ 𝑛 − 1 !
- Recursive approach – decompose into subproblem and combine

- What would our base case / simplest input (𝑛) be?

CSE 123 Winter 2026LEC 08: Recursion

Math Examples

n! / factorial(n) = product of all positive integers <= n

• Reminder, recursive approach: 𝑛! = 𝑛 ∗ 𝑛 − 1 !
- Let’s trace through with a simple example

4! = 4 ∗ 3! 2! = 2 ∗ 1! 1! = 1 ∗ 0! 0! = 13! = 3 ∗ 2!

CSE 123 Winter 2026LEC 08: Recursion

Math Examples

n! / factorial(n) = product of all positive integers <= n

• Reminder, recursive approach: 𝑛! = 𝑛 ∗ 𝑛 − 1 !
- Let’s trace through with a simple example

4! = 4 ∗ 3! 2! = 2 ∗ 1! 1! = 1 ∗ 0! 0! = 13! = 3 ∗ 2!

CSE 123 Winter 2026LEC 08: Recursion

Math Examples

n! / factorial(n) = product of all positive integers <= n

• Reminder, recursive approach: 𝑛! = 𝑛 ∗ 𝑛 − 1 !
- Let’s trace through with a simple example

4! = 4 ∗ 3! 2! = 2 ∗ 1! 1! = 1 ∗ 13! = 3 ∗ 2!

CSE 123 Winter 2026LEC 08: Recursion

Math Examples

n! / factorial(n) = product of all positive integers <= n

• Reminder, recursive approach: 𝑛! = 𝑛 ∗ 𝑛 − 1 !
- Let’s trace through with a simple example

4! = 4 ∗ 3! 2! = 2 ∗ 1! 1! = 13! = 3 ∗ 2!

CSE 123 Winter 2026LEC 08: Recursion

Math Examples

n! / factorial(n) = product of all positive integers <= n

• Reminder, recursive approach: 𝑛! = 𝑛 ∗ 𝑛 − 1 !
- Let’s trace through with a simple example

4! = 4 ∗ 3! 2! = 2 ∗ 13! = 3 ∗ 2!

CSE 123 Winter 2026LEC 08: Recursion

Math Examples

n! / factorial(n) = product of all positive integers <= n

• Reminder, recursive approach: 𝑛! = 𝑛 ∗ 𝑛 − 1 !
- Let’s trace through with a simple example

4! = 4 ∗ 3! 2! = 23! = 3 ∗ 2!

CSE 123 Winter 2026LEC 08: Recursion

Math Examples

n! / factorial(n) = product of all positive integers <= n

• Reminder, recursive approach: 𝑛! = 𝑛 ∗ 𝑛 − 1 !
- Let’s trace through with a simple example

4! = 4 ∗ 3! 3! = 3 ∗ 2

CSE 123 Winter 2026LEC 08: Recursion

Math Examples

n! / factorial(n) = product of all positive integers <= n

• Reminder, recursive approach: 𝑛! = 𝑛 ∗ 𝑛 − 1 !
- Let’s trace through with a simple example

4! = 4 ∗ 3! 3! = 6

CSE 123 Winter 2026LEC 08: Recursion

Math Examples

n! / factorial(n) = product of all positive integers <= n

• Reminder, recursive approach: 𝑛! = 𝑛 ∗ 𝑛 − 1 !
- Let’s trace through with a simple example

4! = 4 ∗ 6

CSE 123 Winter 2026LEC 08: Recursion

Math Examples

n! / factorial(n) = product of all positive integers <= n

• Reminder, recursive approach: 𝑛! = 𝑛 ∗ 𝑛 − 1 !
- Let’s trace through with a simple example

4! = 24

CSE 123 Winter 2026LEC 08: Recursion

Lecture Outline

• Announcements

• Method Calls Review

• Recursion Review

• Recursive Tracing Practice

	Default Section
	Slide 1: Recursion
	Slide 2: Lecture Outline
	Slide 3: Announcements
	Slide 4: Lecture Outline
	Slide 5: Method Calls
	Slide 6: Call Stack
	Slide 7: Call Stack
	Slide 8: Call Stack
	Slide 9: Call Stack
	Slide 10: Call Stack
	Slide 11: Call Stack
	Slide 12: Call Stack
	Slide 13: Call Stack
	Slide 14: Call Stack
	Slide 15: Call Stack
	Slide 16: Call Stack
	Slide 17: Call Stack
	Slide 18: Call Stack
	Slide 19: Call Stack
	Slide 20: Lecture Outline
	Slide 21: Recursion (1)
	Slide 22: Recursion (2)
	Slide 23: Recursion (3)
	Slide 24: Recursion (4)
	Slide 25: Method Calls
	Slide 26: Method Calls
	Slide 27: Recursive Methods
	Slide 28: Recursive Methods
	Slide 29: Math Examples
	Slide 30: Math Examples
	Slide 31: Math Examples
	Slide 32: Math Examples
	Slide 33: Math Examples
	Slide 34: Math Examples
	Slide 35: Math Examples
	Slide 36: Math Examples
	Slide 37: Math Examples
	Slide 38: Math Examples
	Slide 39: Math Examples
	Slide 40: Lecture Outline

