‘W UNIVERSITY of WASHINGTON LEC 06: LinkedIntList CSE 123 Winter 2026

Talk to your neighbors:

What is your favorite way to eat a potato? €

Respond on sli.do!

CSE 123
LinkedIntList

Instructor: Brett Wortzman

TAS: Arohan Jonah Kavya Eeshani Trien
Ashar Brice Misha Aidan Evan
Sean Chris Kieran Cora Rena
Chloe Elden Sahana Dixon Katharine
Jenny Ishita  Anirudh Nhan Anya

Raise hand or send here
Nate Kuhu Crystal

slido #csel23

Now playing: 45 CSE 123 26wi Lecture Tunes &



https://open.spotify.com/playlist/0kFSLp6kKEw6GNZDot0pyT?si=ibDFdyI0Qk-Tgtp8ddHrFw

YW UNIVERSITY of WASHINGTON LEC 06: LinkedIntList CSE 123 Winter 2026

Lecture Outline

 Revisiting the PCM (Modifying Links)

e LinkedIntList



YW UNIVERSITY of WASHINGTON LEC 06: LinkedIntList CSE 123 Winter 2026

Announcements
* Great job on Quiz 0!

- Expect grades before Quiz 1, but we need to wrap up makeup quizzes first

RO and PO feedback are out!

* Creative Project 1 due tonight at 11:59pm
- Submit something so we can provide some feedback!

* Programming Assignment 1 releases tomorrow
- One of the trickier assignments in the course
- 2 weeks to complete this one! Feel free to take a breather if necessary but get
started sooner than later.
* My office hours updated
- Mon 2:45-3:30, Tue 12:30-1:15



YW UNIVERSITY of WASHINGTON LEC 06: LinkedIntList CSE 123 Winter 2026

Lecture Outline

* Announcements

e LinkedIntList



YW UNIVERSITY of WASHINGTON LEC 06: LinkedIntList CSE 123 Winter 2026

Revisiting insertAfterLast

front

-
- o— -

-———
—
~



YW UNIVERSITY of WASHINGTON LEC 06: LinkedIntList CSE 123 Winter 2026

Lecture Outline

* Announcements

 Revisiting the PCM (Modifying Links)



YW UNIVERSITY of WASHINGTON LEC 06: LinkedIntList CSE 123 Winter 2026

Reminder: Implementing Data Structures

* No different from designing any other class!
- Specified behavior (Recall the IntList interface):

Method ___________ |Desription

add(int value) Adds the given value to the end of the list

add(int index, int value) Adds the given value at the given index

remove(int value) Removes the given value if it exists

remove(int index) Removes the value at the given index

get(int index) Returns the value at the given index

set(int index, int value) Updates the value at the given index to the one given
size() Returns the number of elements in the list

- Choose appropriate fields based on behavior

* Just requires some thinking outside the box



YW UNIVERSITY of WASHINGTON LEC 06: LinkedIntList CSE 123 Winter 2026

LinkedIntList (1)

e Goal: leverage non-contiguous memory usage
- How? LinkedNodes!

* What field(s) do we need to keep track of?

- ListNode front; // First node in the chain
front data  next
QAM
1 _|_> p) _|_> 3 _I_y 4 V



YW UNIVERSITY of WASHINGTON LEC 06: LinkedIntList CSE 123 Winter 2026

LinkedIntList (2)

* Now that we have a LinkedIntList class, will a client ever need to
interact with a ListNode?

- No! Not something they should have to worry about

* How can we abstract ListNodes away from them?
- Leaving them in a public file is pretty obvious...

* We can make ListNode an inner class inside LinkedIntList!
- We can still access it (just like private fields)
- Clients don't need to worry about its existence!

- In the real world, we'd also make the inner static L1stNode class private —
we will leave it public here for ease of testing in our course environment.



YW UNIVERSITY of WASHINGTON

Common Cases to Consider for LinkedNodes

*Front of list

* Middle (general)
* Empty list

*End of list



YW UNIVERSITY of WASHINGTON

Reminder: Iterating over ListNodes

* General pattern iteration code will follow:

ListNode curr = front;
while (curr != null) {
// Do something

curr = curr.next;

Why do we need a ListNode curr?



W UNIVERSITY of WASHINGTON LEC 06: LinkedIntList

CSE 123 Winter 2026

Why curr? printList(front) (1)

public static void main(String[] args) {

ListNode front = new ListNode(1l, new ListNode(2, new ListNode(3)));

}
main()

public static void printList(ListNode front) {
while (front != null) {

System.out.print(front.data + " ");
front = front.next;

front

printList()

front

}
System.out.println();




W UNIVERSITY of WASHINGTON LEC 06: LinkedIntList

CSE 123 Winter 2026

Why curr? printList(front) (2)

public static void main(String[] args) {

ListNode front = new ListNode(1l, new ListNode(2, new ListNode(3)));

}
main()

public static void printList(ListNode front) {
while (front != null) {

System.out.print(front.data + " ");
front = front.next;

front

printList()

front

1 —|—>z/—|—>E|3M

}
System.out.println();




W UNIVERSITY of WASHINGTON LEC 06: LinkedIntList

CSE 123 Winter 2026

Why curr? printList(front) (3)

public static void main(String[] args) {

ListNode front = new ListNode(1l, new ListNode(2, new ListNode(3)));

}
main()

public static void printList(ListNode front) {
while (front != null) {

System.out.print(front.data + " ");
front = front.next;

front

printList()

front

1| —— 2 —|—>3M

}
System.out.println();




W UNIVERSITY of WASHINGTON LEC 06: LinkedIntList

CSE 123 Winter 2026

Why curr? printList(front) (4)

public static void main(String[] args) {

ListNode front = new ListNode(1l, new ListNode(2, new ListNode(3)));

}
main()

public static void printList(ListNode front) {
while (front != null) {

System.out.print(front.data + " ");
front = front.next;

front

printList()

front

V4

1| —— 2 —|—>3M

}
System.out.println();




YW UNIVERSITY of WASHINGTON LEC 06: LinkedIntList CSE 123 Winter 2026

Why curr? LinkedIntList (1)

public class LinkedIntList {

private ListNode front;

public void printList() {
while (front != null) {
System.out.print(front.data + " ");

front = front.next;

LinkedIntList

front

1| —— 2 —|—>3M




YW UNIVERSITY of WASHINGTON LEC 06: LinkedIntList CSE 123 Winter 2026

Why curr? LinkedIntList (2)

public class LinkedIntList {

private ListNode front;

public void printList() {
while (front != null) {
System.out.print(front.data + " ");

front = front.next;

LinkedIntList

front

1| —— 2 —|—>3M




YW UNIVERSITY of WASHINGTON LEC 06: LinkedIntList CSE 123 Winter 2026

Why curr? LinkedIntList (3)

public class LinkedIntList {

private ListNode front;

public void printList() {
while (front != null) {
System.out.print(front.data + " ");

front = front.next;

LinkedIntList

front

2 —|—>3M




YW UNIVERSITY of WASHINGTON LEC 06: LinkedIntList CSE 123 Winter 2026

Why curr? LinkedIntList (4)

public class LinkedIntList {

private ListNode front;

public void printList() {
while (front != null) {
System.out.print(front.data + " ");

front = front.next;

LinkedIntList

front

} V4

Modifying front now modifies the list! | 3 M




YW UNIVERSITY of WASHINGTON

Considering LinkedIntList printList()

LinkedIntList

front

1| —— 2 —|—>3M




YW UNIVERSITY of WASHINGTON LEC 06: LinkedIntList CSE 123 Winter 2026

remove(value) v1

LinkedIntList

front

1| —— 3 —|—>4M

curr

[]

—

if (curr.data == value) {
// remove curr from the list...

}




YW UNIVERSITY of WASHINGTON LEC 06: LinkedIntList CSE 123 Winter 2026

remove(value) v2

LinkedIntList

front

1| —— 3 —|—>4M

curr

[:] if (curr.next.data == value) {
// remove curr from the list...

—

}




W UNIVERSITY of WASHINGTON LEC 06: LinkedIntList

CSE 123 Winter 2026

Modifying LinkedLists

* Remember: using a curr variable to iterate over nodes

* Does changing curr actually update our chain?
- What will? Changing curr.next, changing front
- Need to stop one early to make changes

e Often a number of (edge) cases to watch out for:

M(iddle) — Modifying node in the middle of the list (general)
F(ront) — Modifying the first node

E(mpty) — What if the list is empty?

E(nd) — Rare, do we need to do something with the end of the list?



	Slide 1: LinkedIntList
	Slide 2: Lecture Outline
	Slide 3: Announcements
	Slide 4: Lecture Outline
	Slide 5: Revisiting insertAfterLast
	Slide 6: Lecture Outline
	Slide 7: Reminder: Implementing Data Structures
	Slide 8: LinkedIntList (1)
	Slide 9: LinkedIntList (2)
	Slide 10: Common Cases to Consider for LinkedNodes
	Slide 11: Reminder: Iterating over ListNodes
	Slide 12: Why curr? printList(front) (1)
	Slide 13: Why curr? printList(front) (2)
	Slide 14: Why curr? printList(front) (3)
	Slide 15: Why curr? printList(front) (4)
	Slide 16: Why curr? LinkedIntList (1)
	Slide 17: Why curr? LinkedIntList (2)
	Slide 18: Why curr? LinkedIntList (3)
	Slide 19: Why curr? LinkedIntList (4)
	Slide 20: Considering LinkedIntList printList()
	Slide 21: remove(value) v1
	Slide 22: remove(value) v2
	Slide 23: Modifying LinkedLists

