
CSE 123

Questions during Class?
Raise hand or send here

sli.do    #cse123 

CSE 123 Winter 2026

Talk to your neighbors:

BEFORE WE START

Brett Wortzman

Arohan Jonah Kavya Eeshani Trien

Ashar Brice Misha Aidan Evan

Sean Chris Kieran Cora Rena

Chloe Elden Sahana Dixon Katharine

Jenny Ishita Anirudh Nhan Anya

Nate Kuhu Crystal

CSE 123 26wi Lecture Tunes

Now playing: CSE 123 26wi Lecture Tunes

Instructor:

TAs:

LEC 06: LinkedIntList

LEC 06

LinkedIntList

BEFORE WE START

What is your favorite way to eat a potato? 

Respond on sli.do!

https://open.spotify.com/playlist/0kFSLp6kKEw6GNZDot0pyT?si=ibDFdyI0Qk-Tgtp8ddHrFw


CSE 123 Winter 2026LEC 06: LinkedIntList

Lecture Outline

• Announcements

• Revisiting the PCM (Modifying Links)

• LinkedIntList



CSE 123 Winter 2026LEC 06: LinkedIntList

Announcements
• Great job on Quiz 0!

- Expect grades before Quiz 1, but we need to wrap up makeup quizzes first 

• R0 and P0 feedback are out!

• Creative Project 1 due tonight at 11:59pm
- Submit something so we can provide some feedback!

• Programming Assignment 1 releases tomorrow
- One of the trickier assignments in the course

- 2 weeks to complete this one! Feel free to take a breather if necessary but get 
started sooner than later.

• My office hours updated
- Mon 2:45-3:30, Tue 12:30-1:15



CSE 123 Winter 2026LEC 06: LinkedIntList

Lecture Outline

• Announcements

• Revisiting the PCM (Modifying Links)

• LinkedIntList



CSE 123 Winter 2026LEC 06: LinkedIntList

Revisiting insertAfterLast

1 3 4

front

node



CSE 123 Winter 2026LEC 06: LinkedIntList

Lecture Outline

• Announcements

• Revisiting the PCM (Modifying Links)

• LinkedIntList



CSE 123 Winter 2026LEC 06: LinkedIntList

Reminder: Implementing Data Structures

• No different from designing any other class!
- Specified behavior (Recall the IntList interface):

- Choose appropriate fields based on behavior

• Just requires some thinking outside the box

Method Description

add(int value) Adds the given value to the end of the list

add(int index, int value) Adds the given value at the given index

remove(int value) Removes the given value if it exists

remove(int index) Removes the value at the given index 

get(int index) Returns the value at the given index

set(int index, int value) Updates the value at the given index to the one given

size() Returns the number of elements in the list



CSE 123 Winter 2026LEC 06: LinkedIntList

LinkedIntList (1)

• Goal: leverage non-contiguous memory usage
- How? LinkedNodes!

• What field(s) do we need to keep track of?
- ListNode front;      // First node in the chain

1

data nextfront

2 3 4

node



CSE 123 Winter 2026LEC 06: LinkedIntList

LinkedIntList (2)

• Now that we have a LinkedIntList class, will a client ever need to 
interact with a ListNode?

- No! Not something they should have to worry about

• How can we abstract ListNodes away from them?
- Leaving them in a public file is pretty obvious…

• We can make ListNode an inner class inside LinkedIntList!
- We can still access it (just like private fields)

- Clients don't need to worry about its existence! 

- In the real world, we'd also make the inner static ListNode class private – 
we will leave it public here for ease of testing in our course environment. 



CSE 123 Winter 2026LEC 06: LinkedIntList

Common Cases to Consider for LinkedNodes

•Front of list

•Middle (general)

•Empty list

•End of list



CSE 123 Winter 2026LEC 06: LinkedIntList

Reminder: Iterating over ListNodes

• General pattern iteration code will follow:

ListNode curr = front;
while (curr != null) {
    // Do something
    
    curr = curr.next;
}

Why do we need a ListNode curr?



CSE 123 Winter 2026LEC 06: LinkedIntList

Why curr? printList(front) (1)

public static void printList(ListNode front) {

    while (front != null) {

        System.out.print(front.data + " ");

        front = front.next;

    }

    System.out.println();

}

1

front

2 3

public static void main(String[] args) {

    ListNode front = new ListNode(1, new ListNode(2, new ListNode(3)));

}

front

main()

printList()



CSE 123 Winter 2026LEC 06: LinkedIntList

Why curr? printList(front) (2)

public static void printList(ListNode front) {

    while (front != null) {

        System.out.print(front.data + " ");

        front = front.next;

    }

    System.out.println();

}

1

front

2 3

public static void main(String[] args) {

    ListNode front = new ListNode(1, new ListNode(2, new ListNode(3)));

}

front

main()

printList()



CSE 123 Winter 2026LEC 06: LinkedIntList

Why curr? printList(front) (3)

public static void printList(ListNode front) {

    while (front != null) {

        System.out.print(front.data + " ");

        front = front.next;

    }

    System.out.println();

}

1

front

2 3

public static void main(String[] args) {

    ListNode front = new ListNode(1, new ListNode(2, new ListNode(3)));

}

front

main()

printList()



CSE 123 Winter 2026LEC 06: LinkedIntList

Why curr? printList(front) (4)

public static void printList(ListNode front) {

    while (front != null) {

        System.out.print(front.data + " ");

        front = front.next;

    }

    System.out.println();

}

1

front

2 3

public static void main(String[] args) {

    ListNode front = new ListNode(1, new ListNode(2, new ListNode(3)));

}

front

main()

printList()



CSE 123 Winter 2026LEC 06: LinkedIntList

Why curr? LinkedIntList (1)

1

front

2 3

public class LinkedIntList {

    private ListNode front;

    public void printList() {

        while (front != null) {

            System.out.print(front.data + " ");

            front = front.next;

        }

    }

}

            

LinkedIntList



CSE 123 Winter 2026LEC 06: LinkedIntList

Why curr? LinkedIntList (2)

2 31

public class LinkedIntList {

    private ListNode front;

    public void printList() {

        while (front != null) {

            System.out.print(front.data + " ");

            front = front.next;

        }

    }

}

            

front

LinkedIntList



CSE 123 Winter 2026LEC 06: LinkedIntList

Why curr? LinkedIntList (3)

32

public class LinkedIntList {

    private ListNode front;

    public void printList() {

        while (front != null) {

            System.out.print(front.data + " ");

            front = front.next;

        }

    }

}

            

front

LinkedIntList



CSE 123 Winter 2026LEC 06: LinkedIntList

Why curr? LinkedIntList (4)

3

public class LinkedIntList {

    private ListNode front;

    public void printList() {

        while (front != null) {

            System.out.print(front.data + " ");

            front = front.next;

        }

    }

}

            

front

LinkedIntList

Modifying front now modifies the list!



CSE 123 Winter 2026LEC 06: LinkedIntList

Considering LinkedIntList printList()

1

front

2 3

LinkedIntList

curr



CSE 123 Winter 2026LEC 06: LinkedIntList

remove(value) v1

1

front

3 4

LinkedIntList

curr
if (curr.data == value) {
   // remove curr from the list...
}



CSE 123 Winter 2026LEC 06: LinkedIntList

remove(value) v2

1

front

3 4

LinkedIntList

curr
if (curr.next.data == value) {
   // remove curr from the list...
}



CSE 123 Winter 2026LEC 06: LinkedIntList

Modifying LinkedLists

• Remember: using a curr variable to iterate over nodes

• Does changing curr actually update our chain?
- What will? Changing curr.next, changing front

- Need to stop one early to make changes

• Often a number of (edge) cases to watch out for:
- M(iddle) – Modifying node in the middle of the list (general)

- F(ront) – Modifying the first node

- E(mpty) – What if the list is empty?

- E(nd) – Rare, do we need to do something with the end of the list?


	Slide 1: LinkedIntList
	Slide 2: Lecture Outline
	Slide 3: Announcements
	Slide 4: Lecture Outline
	Slide 5: Revisiting insertAfterLast
	Slide 6: Lecture Outline
	Slide 7: Reminder: Implementing Data Structures
	Slide 8: LinkedIntList (1)
	Slide 9: LinkedIntList (2)
	Slide 10: Common Cases to Consider for LinkedNodes
	Slide 11: Reminder: Iterating over ListNodes
	Slide 12: Why curr? printList(front) (1)
	Slide 13: Why curr? printList(front) (2)
	Slide 14: Why curr? printList(front) (3)
	Slide 15: Why curr? printList(front) (4)
	Slide 16: Why curr? LinkedIntList (1)
	Slide 17: Why curr? LinkedIntList (2)
	Slide 18: Why curr? LinkedIntList (3)
	Slide 19: Why curr? LinkedIntList (4)
	Slide 20: Considering LinkedIntList printList()
	Slide 21: remove(value) v1
	Slide 22: remove(value) v2
	Slide 23: Modifying LinkedLists

