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LEC 06

LinkedIntList

BEFORE WE START

What is your favorite way to eat a potato? 

Respond on sli.do!

https://open.spotify.com/playlist/0kFSLp6kKEw6GNZDot0pyT?si=ibDFdyI0Qk-Tgtp8ddHrFw
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• Revisiting the PCM (Modifying Links)

• LinkedIntList
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Announcements
• Great job on Quiz 0!

- Expect grades before Quiz 1, but we need to wrap up makeup quizzes first 

• R0 and P0 feedback are out!

• Creative Project 1 due tonight at 11:59pm
- Submit something so we can provide some feedback!

• Programming Assignment 1 releases tomorrow
- One of the trickier assignments in the course

- 2 weeks to complete this one! Feel free to take a breather if necessary but get 
started sooner than later.

• My office hours updated
- Mon 2:45-3:30, Tue 12:30-1:15
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Revisiting insertAfterLast
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Reminder: Implementing Data Structures

• No different from designing any other class!
- Specified behavior (Recall the IntList interface):

- Choose appropriate fields based on behavior

• Just requires some thinking outside the box

Method Description

add(int value) Adds the given value to the end of the list

add(int index, int value) Adds the given value at the given index

remove(int value) Removes the given value if it exists

remove(int index) Removes the value at the given index 

get(int index) Returns the value at the given index

set(int index, int value) Updates the value at the given index to the one given

size() Returns the number of elements in the list
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LinkedIntList (1)

• Goal: leverage non-contiguous memory usage
- How? LinkedNodes!

• What field(s) do we need to keep track of?
- ListNode front;      // First node in the chain

1

data nextfront

2 3 4

node
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LinkedIntList (2)

• Now that we have a LinkedIntList class, will a client ever need to 
interact with a ListNode?

- No! Not something they should have to worry about

• How can we abstract ListNodes away from them?
- Leaving them in a public file is pretty obvious…

• We can make ListNode an inner class inside LinkedIntList!
- We can still access it (just like private fields)

- Clients don't need to worry about its existence! 

- In the real world, we'd also make the inner static ListNode class private – 
we will leave it public here for ease of testing in our course environment. 
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Common Cases to Consider for LinkedNodes

•Front of list

•Middle (general)

•Empty list

•End of list



CSE 123 Winter 2026LEC 06: LinkedIntList

Reminder: Iterating over ListNodes

• General pattern iteration code will follow:

ListNode curr = front;
while (curr != null) {
    // Do something
    
    curr = curr.next;
}

Why do we need a ListNode curr?
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Why curr? printList(front) (1)

public static void printList(ListNode front) {

    while (front != null) {

        System.out.print(front.data + " ");

        front = front.next;

    }

    System.out.println();

}

1

front

2 3

public static void main(String[] args) {

    ListNode front = new ListNode(1, new ListNode(2, new ListNode(3)));

}

front

main()

printList()
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Why curr? printList(front) (2)

public static void printList(ListNode front) {

    while (front != null) {

        System.out.print(front.data + " ");

        front = front.next;

    }

    System.out.println();

}

1

front

2 3

public static void main(String[] args) {

    ListNode front = new ListNode(1, new ListNode(2, new ListNode(3)));

}

front

main()

printList()
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Why curr? printList(front) (3)

public static void printList(ListNode front) {

    while (front != null) {

        System.out.print(front.data + " ");

        front = front.next;

    }

    System.out.println();

}

1

front

2 3

public static void main(String[] args) {

    ListNode front = new ListNode(1, new ListNode(2, new ListNode(3)));

}

front

main()

printList()
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Why curr? printList(front) (4)

public static void printList(ListNode front) {

    while (front != null) {

        System.out.print(front.data + " ");

        front = front.next;

    }

    System.out.println();

}

1

front

2 3

public static void main(String[] args) {

    ListNode front = new ListNode(1, new ListNode(2, new ListNode(3)));

}

front

main()

printList()
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Why curr? LinkedIntList (1)

1

front

2 3

public class LinkedIntList {

    private ListNode front;

    public void printList() {

        while (front != null) {

            System.out.print(front.data + " ");

            front = front.next;

        }

    }

}

            

LinkedIntList
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Why curr? LinkedIntList (2)

2 31

public class LinkedIntList {

    private ListNode front;

    public void printList() {

        while (front != null) {

            System.out.print(front.data + " ");

            front = front.next;

        }

    }

}

            

front

LinkedIntList
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Why curr? LinkedIntList (3)

32

public class LinkedIntList {

    private ListNode front;

    public void printList() {

        while (front != null) {

            System.out.print(front.data + " ");

            front = front.next;

        }

    }

}

            

front

LinkedIntList
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Why curr? LinkedIntList (4)

3

public class LinkedIntList {

    private ListNode front;

    public void printList() {

        while (front != null) {

            System.out.print(front.data + " ");

            front = front.next;

        }

    }

}

            

front

LinkedIntList

Modifying front now modifies the list!
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Considering LinkedIntList printList()

1

front

2 3

LinkedIntList

curr
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remove(value) v1

1

front

3 4

LinkedIntList

curr
if (curr.data == value) {
   // remove curr from the list...
}
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remove(value) v2

1

front

3 4

LinkedIntList

curr
if (curr.next.data == value) {
   // remove curr from the list...
}
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Modifying LinkedLists

• Remember: using a curr variable to iterate over nodes

• Does changing curr actually update our chain?
- What will? Changing curr.next, changing front

- Need to stop one early to make changes

• Often a number of (edge) cases to watch out for:
- M(iddle) – Modifying node in the middle of the list (general)

- F(ront) – Modifying the first node

- E(mpty) – What if the list is empty?

- E(nd) – Rare, do we need to do something with the end of the list?
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