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Lecture Outline

e Reference Semantics Review
* Contiguous / Non-Contiguous Memory Review

e ListNode Practice
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Announcements

* Creative Project O feedback is out!

* Resubmission Cycle 0 opens today, closes this Friday, January 23
- Normally resubmissions will be open Mon — Fri each week

* Programming Assignment O due tonight, January 21 at 11:59pm!
- See generic Programming Assignment rubric posted on website

* Creative Project 1 will be released tomorrow, January 22
- Focused on design and implementation of data structures

* Quiz 0 next week (Tuesday, January 27)
- See Quiz Logistics announcement on Ed
- Practice quiz(zes) available soon

* Brett’s Office Hours (finally) posted

CSE 123 Winter 2026


https://cs.uw.edu/123/rubrics/#programming-assignment-rubric
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Lecture Outline

* Announcements

e Contiguous / Non-Contiguous Memory Review

 ListNode Practice
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Reference Semantics

* In Java, variables are treated two different ways:

Value Semantics Reference Semantics

Primitive types (int, double, boolean)+ Strings Object types (int[], Scanner, ArraylList)

Values stored locally Values stored in memory, reference stored locally
Initialization copies value (many copies of value) Initialization copies reference (only one value)
int x = 10; int[] x = new int[5];
int y = x; int[] v = x;
y++; // X remains unchanged y[O]++; // xX[@] changed

* We often draw “reference diagrams” to keep track of everything

JEINE
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Reference Semantics
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Lecture Outline

* Announcements

* Reference Semantics Review

e ListNode Practice
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Contiguous vs. Non-contiguous: Memory

* Computer memory = one really, really big array.

Memory

85 47 -51 44 -38 35 -58 79 27 -14
-24 -38 -66 -27 36 -1 23 20 31 -40
-34 38 37 -52 -15 99 6 68 -67 -58
13 -17 -85 -99 -20 -33 54 38 -66 8

36 24 27 90 -32 72 -73 11 -85 29
-90 -64 29 -27 91 64 28 -97 44 59
-68 76 -1 -6 -52 77 21 37 80 69
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Contiguous vs. Non-contiguous: array (1)

* Computer memory = one really, really big array.

LEC 04: Linked Nodes

- int[] arr = new int[10];
Memory
85 47 -51 44 -38 35 -58 79 27 -14
-24 -38 -66 -27 36 -1 23 20 31 -40
D -34 38 37 -52 -15 99 6 68 -67 -58
13 -17 -85 -99 -20 -33 54 38 -66 8
36 24 27 90 -32 72 -73 11 -85 29
-90 -64 29 -27 91 64 28 -97 44 59
-68 76 -1 -6 -52 77 21 37 80 69

CSE 123 Winter 2026
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Contiguous vs. Non-contiguous: array (2)

* Computer memory = one really, really big array.

LEC 04: Linked Nodes

- int[] arr = new int[7];
Memory

85 47 -51 44 -38 35 -58 79 27 -14
-24 -38 -66 -27 36 -1 23 20 31 -40
-34 38 37 -52 -15 99 6 68 -67 -58
13 -17 -85 -99 -20 -33 54 38 -66 8

24 27 90 -32 72 -73 11 -85 29

0 0 (%] (%] 0 (%] (%] 44 59
-68 76 -1 -6 -52 77 21 37 80 69

We call this

“contiguous” memory

CSE 123 Winter 2026
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ListNode

e Java class representing a “node”

* Two fields to store discussed state:
- Fields are public?! We'll come back to this

* Why can ListNode be a field in the ListNode class?

public class ListNode {
public int data;
public ListNode next;
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Contiguous vs. Non-contiguous: ListNode (1)

* Computer memory = one really, really big array.
ListNode list = new ListNode(1);

list.next = new ListNode(2); Memory
85 47 -51 44 -38 35 -58 79 27 -14
l 1 S't -24 -38 -1 -27 36 -1 23 20 31 -40
-34 38 37 -52 -15 99 6 68 -67 -58
D 13 -17 -85 -99 -20 -33 54 38 -66 8
36 24 27 90 -32 72 -73 11 -85 29
-90 -64 29 -27 91 64 28 -97 44 59
-68 76 -1 -6 -52 77 21 37 80 69
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Contiguous vs. Non-contiguous: ListNode (2)

* Computer memory = one really, really big array.

ListNode list

list.next

list

new ListNode(1l);

new ListNode(2); Memory
85 47 -51 44 -38 35 -58 79 27 -14

-24 1 null -27 36 -1 23 20 31 -40

-34 37 -52 -15 99 6 68 -67 -58

13 -85 -99 -20 -33 54 38 -66 8

36 24 27 90 -32 72 -73 11 -85 29

-90 -64 29 -27 91 64 28 -97 44 59

-68 76 -1 -6 -52 77 21 37 80 69
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Contiguous vs. Non-contiguous: ListNode (3)

* Computer memory = one really, really big array.
ListNode list = new ListNode(1);

list.next = new ListNode(2); Memory
85 47 -51 44 -38 35 -58 79 27 -14
l 1 S't -24 1 -27 36 -1 23 20 31 -40
-34 -52 -15 99 6 68 -67 -58
13 -99 54 38 -66 8
36 24 2 null -85 29
-90 -64 29 -27 91 64 28 -97 44 59
-68 76 -1 -6 -52 77 21 37 80 69
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Contiguous vs. Non-contiguous: Summary

* Computer memory = one really, really big array.

e Contiguous memory = impossible to resize directly
- Surrounding stuff in memory (we can’t just overwrite)
- Best we can manage is get more space and copy

* Non-contiguous memory = easy to resize
- Just get some more memory and link it to the rest
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Lecture Outline

* Announcements
e Reference Semantics Review

* Contiguous / Non-Contiguous Memory Review
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Linked Nodes

* We want to create a list of ints “non-contiguously”

* Accomplish this with nodes we link together
- Each node stores an int (data) and a reference to the next node (next)

data next

—

(ol el efg- « g m] |

N—

node
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