
CSE 123

Questions during Class?
Raise hand or send here

sli.do #cse123

CSE 123 Winter 2026

Talk to your neighbors:

BEFORE WE START

Brett Wortzman

Arohan Jonah Kavya Eeshani Trien

Ashar Brice Misha Aidan Evan

Sean Chris Kieran Cora Rena

Chloe Elden Sahana Dixon Katharine

Jenny Ishita Anirudh Nhan Anya

Nate Kuhu Crystal

CSE 123 26wi Lecture Tunes

Now playing: CSE 123 26wi Lecture Tunes

Instructor:

TAs:

LEC 04: Linked Nodes

LEC 04

Linked Nodes

BEFORE WE START

How do you relax after a stressful day?

Respond on sli.do!

https://open.spotify.com/playlist/0kFSLp6kKEw6GNZDot0pyT?si=ibDFdyI0Qk-Tgtp8ddHrFw

CSE 123 Winter 2026LEC 04: Linked Nodes

Lecture Outline

• Announcements

• Reference Semantics Review

• Contiguous / Non-Contiguous Memory Review

• ListNode Practice

CSE 123 Winter 2026LEC 04: Linked Nodes

Announcements
• Creative Project 0 feedback is out!

• Resubmission Cycle 0 opens today, closes this Friday, January 23
- Normally resubmissions will be open Mon – Fri each week

• Programming Assignment 0 due tonight, January 21 at 11:59pm!
- See generic Programming Assignment rubric posted on website

• Creative Project 1 will be released tomorrow, January 22
- Focused on design and implementation of data structures

• Quiz 0 next week (Tuesday, January 27)
- See Quiz Logistics announcement on Ed
- Practice quiz(zes) available soon

• Brett’s Office Hours (finally) posted

https://cs.uw.edu/123/rubrics/#programming-assignment-rubric

CSE 123 Winter 2026LEC 04: Linked Nodes

Lecture Outline

• Announcements

• Reference Semantics Review

• Contiguous / Non-Contiguous Memory Review

• ListNode Practice

CSE 123 Winter 2026LEC 04: Linked Nodes

Reference Semantics

• In Java, variables are treated two different ways:

• We often draw “reference diagrams” to keep track of everything

Value Semantics Reference Semantics

Primitive types (int, double, boolean) + Strings Object types (int[], Scanner, ArrayList)

Values stored locally Values stored in memory, reference stored locally

Initialization copies value (many copies of value) Initialization copies reference (only one value)

int x = 10;
int y = x;

y++; // x remains unchanged

int[] x = new int[5];
int[] y = x;

y[0]++; // x[0] changed

x 10 y

CSE 123 Winter 2026LEC 04: Linked Nodes

Reference Semantics

• In Java, variables are treated two different ways:

• We often draw “reference diagrams” to keep track of everything

Value Semantics Reference Semantics

Primitive types (int, double, boolean) + Strings Object types (int[], Scanner, ArrayList)

Values stored locally Values stored in memory, reference stored locally

Initialization copies value (many copies of value) Initialization copies reference (only one value)

int x = 10;
int y = x;

y++; // x remains unchanged

int[] x = new int[5];
int[] y = x;

y[0]++; // x[0] changed

x 10 y 10

CSE 123 Winter 2026LEC 04: Linked Nodes

Reference Semantics

• In Java, variables are treated two different ways:

• We often draw “reference diagrams” to keep track of everything

Value Semantics Reference Semantics

Primitive types (int, double, boolean) + Strings Object types (int[], Scanner, ArrayList)

Values stored locally Values stored in memory, reference stored locally

Initialization copies value (many copies of value) Initialization copies reference (only one value)

int x = 10;
int y = x;

y++; // x remains unchanged

int[] x = new int[5];
int[] y = x;

y[0]++; // x[0] changed

x 10 y 11

CSE 123 Winter 2026LEC 04: Linked Nodes

Reference Semantics

• In Java, variables are treated two different ways:

• We often draw “reference diagrams” to keep track of everything

Value Semantics Reference Semantics

Primitive types (int, double, boolean) + Strings Object types (int[], Scanner, ArrayList)

Values stored locally Values stored in memory, reference stored locally

Initialization copies value (many copies of value) Initialization copies reference (only one value)

int x = 10;
int y = x;

y++; // x remains unchanged

int[] x = new int[5];
int[] y = x;

y[0]++; // x[0] changed

x y 0 0 0 0 0

CSE 123 Winter 2026LEC 04: Linked Nodes

Reference Semantics

• In Java, variables are treated two different ways:

• We often draw “reference diagrams” to keep track of everything

Value Semantics Reference Semantics

Primitive types (int, double, boolean) + Strings Object types (int[], Scanner, ArrayList)

Values stored locally Values stored in memory, reference stored locally

Initialization copies value (many copies of value) Initialization copies reference (only one value)

int x = 10;
int y = x;

y++; // x remains unchanged

int[] x = new int[5];
int[] y = x;

y[0]++; // x[0] changed

x y 0 0 0 0 0

CSE 123 Winter 2026LEC 04: Linked Nodes

Reference Semantics

• In Java, variables are treated two different ways:

• We often draw “reference diagrams” to keep track of everything

Value Semantics Reference Semantics

Primitive types (int, double, boolean) + Strings Object types (int[], Scanner, ArrayList)

Values stored locally Values stored in memory, reference stored locally

Initialization copies value (many copies of value) Initialization copies reference (only one value)

int x = 10;
int y = x;

y++; // x remains unchanged

int[] x = new int[5];
int[] y = x;

y[0]++; // x[0] changed

x y 1 0 0 0 0

CSE 123 Winter 2026LEC 04: Linked Nodes

Lecture Outline

• Announcements

• Reference Semantics Review

• Contiguous / Non-Contiguous Memory Review

• ListNode Practice

CSE 123 Winter 2026LEC 04: Linked Nodes

Contiguous vs. Non-contiguous: Memory

• Computer memory = one really, really big array.

Memory

85 47 -51 44 -38 35 -58 79 27 -14

-24 -38 -66 -27 36 -1 23 20 31 -40

-34 38 37 -52 -15 99 6 68 -67 -58

13 -17 -85 -99 -20 -33 54 38 -66 8

36 24 27 90 -32 72 -73 11 -85 29

-90 -64 29 -27 91 64 28 -97 44 59

-68 76 -1 -6 -52 77 21 37 80 69

CSE 123 Winter 2026LEC 04: Linked Nodes

Contiguous vs. Non-contiguous: array (1)

• Computer memory = one really, really big array.
- int[] arr = new int[10];

Memory

85 47 -51 44 -38 35 -58 79 27 -14

-24 -38 -66 -27 36 -1 23 20 31 -40

-34 38 37 -52 -15 99 6 68 -67 -58

13 -17 -85 -99 -20 -33 54 38 -66 8

36 24 27 90 -32 72 -73 11 -85 29

-90 -64 29 -27 91 64 28 -97 44 59

-68 76 -1 -6 -52 77 21 37 80 69

arr

CSE 123 Winter 2026LEC 04: Linked Nodes

Contiguous vs. Non-contiguous: array (2)

• Computer memory = one really, really big array.
- int[] arr = new int[7];

Memory

arr

We call this “contiguous” memory

85 47 -51 44 -38 35 -58 79 27 -14

-24 -38 -66 -27 36 -1 23 20 31 -40

-34 38 37 -52 -15 99 6 68 -67 -58

13 -17 -85 -99 -20 -33 54 38 -66 8

36 24 27 90 -32 72 -73 11 -85 29

-90 0 0 0 0 0 0 0 44 59

-68 76 -1 -6 -52 77 21 37 80 69

CSE 123 Winter 2026LEC 04: Linked Nodes

ListNode

• Java class representing a “node”

• Two fields to store discussed state:
- Fields are public?! We’ll come back to this

• Why can ListNode be a field in the ListNode class?

public class ListNode {
 public int data;
 public ListNode next;
}

CSE 123 Winter 2026LEC 04: Linked Nodes

Contiguous vs. Non-contiguous: ListNode (1)

• Computer memory = one really, really big array.

ListNode list = new ListNode(1);

list.next = new ListNode(2); Memory

list
85 47 -51 44 -38 35 -58 79 27 -14

-24 -38 -1 -27 36 -1 23 20 31 -40

-34 38 37 -52 -15 99 6 68 -67 -58

13 -17 -85 -99 -20 -33 54 38 -66 8

36 24 27 90 -32 72 -73 11 -85 29

-90 -64 29 -27 91 64 28 -97 44 59

-68 76 -1 -6 -52 77 21 37 80 69

CSE 123 Winter 2026LEC 04: Linked Nodes

Contiguous vs. Non-contiguous: ListNode (2)

• Computer memory = one really, really big array.

ListNode list = new ListNode(1);

list.next = new ListNode(2); Memory

list
85 47 -51 44 -38 35 -58 79 27 -14

-24 1 null -27 36 -1 23 20 31 -40

-34 38 37 -52 -15 99 6 68 -67 -58

13 -17 -85 -99 -20 -33 54 38 -66 8

36 24 27 90 -32 72 -73 11 -85 29

-90 -64 29 -27 91 64 28 -97 44 59

-68 76 -1 -6 -52 77 21 37 80 69

CSE 123 Winter 2026LEC 04: Linked Nodes

Contiguous vs. Non-contiguous: ListNode (3)

• Computer memory = one really, really big array.

ListNode list = new ListNode(1);

list.next = new ListNode(2); Memory

list
85 47 -51 44 -38 35 -58 79 27 -14

-24 1 null -27 36 -1 23 20 31 -40

-34 38 37 -52 -15 99 6 68 -67 -58

13 -17 -85 -99 -20 -33 54 38 -66 8

36 24 27 90 -32 72 2 null -85 29

-90 -64 29 -27 91 64 28 -97 44 59

-68 76 -1 -6 -52 77 21 37 80 69

CSE 123 Winter 2026LEC 04: Linked Nodes

Contiguous vs. Non-contiguous: Summary

• Computer memory = one really, really big array.

• Contiguous memory = impossible to resize directly
- Surrounding stuff in memory (we can’t just overwrite)

- Best we can manage is get more space and copy

• Non-contiguous memory = easy to resize
- Just get some more memory and link it to the rest

CSE 123 Winter 2026LEC 04: Linked Nodes

Lecture Outline

• Announcements

• Reference Semantics Review

• Contiguous / Non-Contiguous Memory Review

• ListNode Practice

CSE 123 Winter 2026LEC 04: Linked Nodes

Linked Nodes

• We want to create a list of ints “non-contiguously”

• Accomplish this with nodes we link together
- Each node stores an int (data) and a reference to the next node (next)

data next

node

	Default Section
	Slide 1: Linked Nodes
	Slide 2: Lecture Outline
	Slide 3: Announcements
	Slide 4: Lecture Outline
	Slide 5: Reference Semantics
	Slide 6: Reference Semantics
	Slide 7: Reference Semantics
	Slide 8: Reference Semantics
	Slide 9: Reference Semantics
	Slide 10: Reference Semantics
	Slide 11: Lecture Outline
	Slide 12: Contiguous vs. Non-contiguous: Memory
	Slide 13: Contiguous vs. Non-contiguous: array (1)
	Slide 14: Contiguous vs. Non-contiguous: array (2)
	Slide 15: ListNode
	Slide 16: Contiguous vs. Non-contiguous: ListNode (1)
	Slide 17: Contiguous vs. Non-contiguous: ListNode (2)
	Slide 18: Contiguous vs. Non-contiguous: ListNode (3)
	Slide 19: Contiguous vs. Non-contiguous: Summary
	Slide 20: Lecture Outline
	Slide 21: Linked Nodes

