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Linked Nodes

BEFORE WE START

How do you relax after a stressful day?

Respond on sli.do!
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Lecture Outline

• Announcements

• Reference Semantics Review

• Contiguous / Non-Contiguous Memory Review

• ListNode Practice
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Announcements
• Creative Project 0 feedback is out!

• Resubmission Cycle 0 opens today, closes this Friday, January 23
- Normally resubmissions will be open Mon – Fri each week

• Programming Assignment 0 due tonight, January 21 at 11:59pm!
- See generic Programming Assignment rubric posted on website 

• Creative Project 1 will be released tomorrow, January 22
- Focused on design and implementation of data structures

• Quiz 0 next week (Tuesday, January 27)
- See Quiz Logistics announcement on Ed
- Practice quiz(zes) available soon

• Brett’s Office Hours (finally) posted

https://cs.uw.edu/123/rubrics/#programming-assignment-rubric
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Reference Semantics

• In Java, variables are treated two different ways:

• We often draw “reference diagrams” to keep track of everything

Value Semantics Reference Semantics

Primitive types (int, double, boolean) + Strings Object types (int[], Scanner, ArrayList)

Values stored locally Values stored in memory, reference stored locally

Initialization copies value (many copies of value) Initialization copies reference (only one value)

int x = 10;
int y = x;

y++;     // x remains unchanged

int[] x = new int[5];
int[] y = x;

y[0]++;    // x[0] changed

x 10 y
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Reference Semantics

• In Java, variables are treated two different ways:

• We often draw “reference diagrams” to keep track of everything

Value Semantics Reference Semantics

Primitive types (int, double, boolean) + Strings Object types (int[], Scanner, ArrayList)

Values stored locally Values stored in memory, reference stored locally

Initialization copies value (many copies of value) Initialization copies reference (only one value)

int x = 10;
int y = x;

y++;     // x remains unchanged

int[] x = new int[5];
int[] y = x;

y[0]++;    // x[0] changed

x 10 y 10
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Reference Semantics

• In Java, variables are treated two different ways:

• We often draw “reference diagrams” to keep track of everything

Value Semantics Reference Semantics

Primitive types (int, double, boolean) + Strings Object types (int[], Scanner, ArrayList)

Values stored locally Values stored in memory, reference stored locally

Initialization copies value (many copies of value) Initialization copies reference (only one value)

int x = 10;
int y = x;

y++;     // x remains unchanged

int[] x = new int[5];
int[] y = x;

y[0]++;    // x[0] changed

x 10 y 11
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Reference Semantics

• In Java, variables are treated two different ways:

• We often draw “reference diagrams” to keep track of everything

Value Semantics Reference Semantics

Primitive types (int, double, boolean) + Strings Object types (int[], Scanner, ArrayList)

Values stored locally Values stored in memory, reference stored locally

Initialization copies value (many copies of value) Initialization copies reference (only one value)

int x = 10;
int y = x;

y++;     // x remains unchanged

int[] x = new int[5];
int[] y = x;

y[0]++;    // x[0] changed

x y 0 0 0 0 0



CSE 123 Winter 2026LEC 04: Linked Nodes

Reference Semantics

• In Java, variables are treated two different ways:

• We often draw “reference diagrams” to keep track of everything

Value Semantics Reference Semantics

Primitive types (int, double, boolean) + Strings Object types (int[], Scanner, ArrayList)

Values stored locally Values stored in memory, reference stored locally

Initialization copies value (many copies of value) Initialization copies reference (only one value)

int x = 10;
int y = x;

y++;     // x remains unchanged

int[] x = new int[5];
int[] y = x;

y[0]++;    // x[0] changed

x y 0 0 0 0 0
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Reference Semantics

• In Java, variables are treated two different ways:

• We often draw “reference diagrams” to keep track of everything

Value Semantics Reference Semantics

Primitive types (int, double, boolean) + Strings Object types (int[], Scanner, ArrayList)

Values stored locally Values stored in memory, reference stored locally

Initialization copies value (many copies of value) Initialization copies reference (only one value)

int x = 10;
int y = x;

y++;     // x remains unchanged

int[] x = new int[5];
int[] y = x;

y[0]++;    // x[0] changed

x y 1 0 0 0 0
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• Announcements

• Reference Semantics Review

• Contiguous / Non-Contiguous Memory Review

• ListNode Practice
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Contiguous vs. Non-contiguous: Memory

• Computer memory = one really, really big array.

Memory

85 47 -51 44 -38 35 -58 79 27 -14

-24 -38 -66 -27 36 -1 23 20 31 -40

-34 38 37 -52 -15 99 6 68 -67 -58

13 -17 -85 -99 -20 -33 54 38 -66 8

36 24 27 90 -32 72 -73 11 -85 29

-90 -64 29 -27 91 64 28 -97 44 59

-68 76 -1 -6 -52 77 21 37 80 69
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Contiguous vs. Non-contiguous: array (1)

• Computer memory = one really, really big array.
- int[] arr = new int[10];

Memory

85 47 -51 44 -38 35 -58 79 27 -14

-24 -38 -66 -27 36 -1 23 20 31 -40

-34 38 37 -52 -15 99 6 68 -67 -58

13 -17 -85 -99 -20 -33 54 38 -66 8

36 24 27 90 -32 72 -73 11 -85 29

-90 -64 29 -27 91 64 28 -97 44 59

-68 76 -1 -6 -52 77 21 37 80 69

arr
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Contiguous vs. Non-contiguous: array (2)

• Computer memory = one really, really big array.
- int[] arr = new int[7];

Memory

arr

We call this “contiguous” memory

85 47 -51 44 -38 35 -58 79 27 -14

-24 -38 -66 -27 36 -1 23 20 31 -40

-34 38 37 -52 -15 99 6 68 -67 -58

13 -17 -85 -99 -20 -33 54 38 -66 8

36 24 27 90 -32 72 -73 11 -85 29

-90 0 0 0 0 0 0 0 44 59

-68 76 -1 -6 -52 77 21 37 80 69
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ListNode

• Java class representing a “node”

• Two fields to store discussed state:
- Fields are public?! We’ll come back to this

• Why can ListNode be a field in the ListNode class?

public class ListNode {
    public int data;
    public ListNode next;
}
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Contiguous vs. Non-contiguous: ListNode (1)

• Computer memory = one really, really big array.

ListNode list = new ListNode(1);

list.next = new ListNode(2); Memory

list
85 47 -51 44 -38 35 -58 79 27 -14

-24 -38 -1 -27 36 -1 23 20 31 -40

-34 38 37 -52 -15 99 6 68 -67 -58

13 -17 -85 -99 -20 -33 54 38 -66 8

36 24 27 90 -32 72 -73 11 -85 29

-90 -64 29 -27 91 64 28 -97 44 59

-68 76 -1 -6 -52 77 21 37 80 69
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Contiguous vs. Non-contiguous: ListNode (2)

• Computer memory = one really, really big array.

ListNode list = new ListNode(1);

list.next = new ListNode(2); Memory

list
85 47 -51 44 -38 35 -58 79 27 -14

-24 1 null -27 36 -1 23 20 31 -40

-34 38 37 -52 -15 99 6 68 -67 -58

13 -17 -85 -99 -20 -33 54 38 -66 8

36 24 27 90 -32 72 -73 11 -85 29

-90 -64 29 -27 91 64 28 -97 44 59

-68 76 -1 -6 -52 77 21 37 80 69
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Contiguous vs. Non-contiguous: ListNode (3)

• Computer memory = one really, really big array.

ListNode list = new ListNode(1); 

list.next = new ListNode(2); Memory

list
85 47 -51 44 -38 35 -58 79 27 -14

-24 1 null -27 36 -1 23 20 31 -40

-34 38 37 -52 -15 99 6 68 -67 -58

13 -17 -85 -99 -20 -33 54 38 -66 8

36 24 27 90 -32 72 2 null -85 29

-90 -64 29 -27 91 64 28 -97 44 59

-68 76 -1 -6 -52 77 21 37 80 69
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Contiguous vs. Non-contiguous: Summary

• Computer memory = one really, really big array.

• Contiguous memory = impossible to resize directly
- Surrounding stuff in memory (we can’t just overwrite)

- Best we can manage is get more space and copy

• Non-contiguous memory = easy to resize
- Just get some more memory and link it to the rest
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Lecture Outline

• Announcements

• Reference Semantics Review

• Contiguous / Non-Contiguous Memory Review

• ListNode Practice
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Linked Nodes

• We want to create a list of ints “non-contiguously”

• Accomplish this with nodes we link together
- Each node stores an int (data) and a reference to the next node (next)

data next

node
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