‘W UNIVERSITY of WASHINGTON LEC 04: Linked Nodes CSE 123 Winter 2026

Talk to your neighbors:

How do you relax after a stressful day?

CSE 123 Respond on sli.do!

A Instructor: Brett Wortzman
Linked Nodes

TAS: Arohan Jonah Kavya Eeshani Trien
Ashar Brice Misha Aidan Evan
Sean Chris Kieran Cora Rena
Chloe Elden Sahana Dixon Katharine
Jenny Ishita Anirudh Nhan Anya

Raise hand or send here
Nate Kuhu Crystal

slido #csel23

Now playing: 45 CSE 123 26wi Lecture Tunes &

https://open.spotify.com/playlist/0kFSLp6kKEw6GNZDot0pyT?si=ibDFdyI0Qk-Tgtp8ddHrFw

YW UNIVERSITY of WASHINGTON LEC 04: Linked Nodes CSE 123 Winter 2026

Lecture Outline

e Reference Semantics Review
* Contiguous / Non-Contiguous Memory Review

e ListNode Practice

W UNIVERSITY of WASHINGTON LEC 04: Linked Nodes

Announcements

* Creative Project O feedback is out!

* Resubmission Cycle 0 opens today, closes this Friday, January 23
- Normally resubmissions will be open Mon — Fri each week

* Programming Assignment O due tonight, January 21 at 11:59pm!
- See generic Programming Assignment rubric posted on website

* Creative Project 1 will be released tomorrow, January 22
- Focused on design and implementation of data structures

* Quiz 0 next week (Tuesday, January 27)
- See Quiz Logistics announcement on Ed
- Practice quiz(zes) available soon

* Brett’s Office Hours (finally) posted

CSE 123 Winter 2026

https://cs.uw.edu/123/rubrics/#programming-assignment-rubric

YW UNIVERSITY of WASHINGTON LEC 04: Linked Nodes CSE 123 Winter 2026

Lecture Outline

* Announcements

e Contiguous / Non-Contiguous Memory Review

 ListNode Practice

YW UNIVERSITY of WASHINGTON LEC 04: Linked Nodes CSE 123 Winter 2026

Reference Semantics

* In Java, variables are treated two different ways:

Value Semantics Reference Semantics

Primitive types (int, double, boolean)+ Strings Object types (int[], Scanner, ArraylList)

Values stored locally Values stored in memory, reference stored locally
Initialization copies value (many copies of value) Initialization copies reference (only one value)
int x = 10; int[] x = new int[5];
int y = x; int[] v = x;
y++; // X remains unchanged y[O]++; // xX[@] changed

* We often draw “reference diagrams” to keep track of everything

JEINE

YW UNIVERSITY of WASHINGTON LEC 04: Linked Nodes CSE 123 Winter 2026

Reference Semantics

* In Java, variables are treated two different ways:

Value Semantics Reference Semantics

Primitive types (int, double, boolean)+ Strings Object types (int[], Scanner, ArraylList)

Values stored locally Values stored in memory, reference stored locally
Initialization copies value (many copies of value) Initialization copies reference (only one value)
int x = 10; int[] x = new int[5];
int y = x; int[] v = x;
y++; // X remains unchanged y[O]++; // xX[@] changed

* We often draw “reference diagrams” to keep track of everything

() (e

YW UNIVERSITY of WASHINGTON LEC 04: Linked Nodes CSE 123 Winter 2026

Reference Semantics

* In Java, variables are treated two different ways:

Value Semantics Reference Semantics

Primitive types (int, double, boolean)+ Strings Object types (int[], Scanner, ArraylList)

Values stored locally Values stored in memory, reference stored locally
Initialization copies value (many copies of value) Initialization copies reference (only one value)
int x = 10; int[] x = new int[5];
int y = x; int[] v = x;
y++; // X remains unchanged y[O]++; // xX[@] changed

* We often draw “reference diagrams” to keep track of everything

(o) o[

YW UNIVERSITY of WASHINGTON LEC 04: Linked Nodes CSE 123 Winter 2026

Reference Semantics

* In Java, variables are treated two different ways:

Value Semantics Reference Semantics

Primitive types (int, double, boolean)+ Strings Object types (int[], Scanner, ArraylList)

Values stored locally Values stored in memory, reference stored locally
Initialization copies value (many copies of value) Initialization copies reference (only one value)
int x = 10; int[] x = new int[5];
int y = x; int[] v = x;
y++; // X remains unchanged y[O]++; // xX[@] changed

* We often draw “reference diagrams” to keep track of everything

xlil yl I (% 9 (% 9 0

YW UNIVERSITY of WASHINGTON LEC 04: Linked Nodes CSE 123 Winter 2026

Reference Semantics

* In Java, variables are treated two different ways:

Value Semantics Reference Semantics

Primitive types (int, double, boolean)+ Strings Object types (int[], Scanner, ArraylList)

Values stored locally Values stored in memory, reference stored locally
Initialization copies value (many copies of value) Initialization copies reference (only one value)
int x = 10; int[] x = new int[5];
int y = x; int[] v = x;
y++; // X remains unchanged y[O]++; // xX[@] changed

* We often draw “reference diagrams” to keep track of everything

xlil ylil (% 9 (% 9 0

YW UNIVERSITY of WASHINGTON LEC 04: Linked Nodes CSE 123 Winter 2026

Reference Semantics

* In Java, variables are treated two different ways:

Value Semantics Reference Semantics

Primitive types (int, double, boolean)+ Strings Object types (int[], Scanner, ArraylList)

Values stored locally Values stored in memory, reference stored locally
Initialization copies value (many copies of value) Initialization copies reference (only one value)
int x = 10; int[] x = new int[5];
int y = x; int[] v = x;
y++; // X remains unchanged y[O]++; // xX[@] changed

* We often draw “reference diagrams” to keep track of everything

xlil ylil 1 9 (% 9 0

LEC 04: Linked Nodes CSE 123 Winter 2026

YW UNIVERSITY of WASHINGTON

Lecture Outline

* Announcements

* Reference Semantics Review

e ListNode Practice

YW UNIVERSITY of WASHINGTON

LEC 04: Linked Nodes

CSE 123 Winter 2026

Contiguous vs. Non-contiguous: Memory

* Computer memory = one really, really big array.

Memory

85 47 -51 44 -38 35 -58 79 27 -14
-24 -38 -66 -27 36 -1 23 20 31 -40
-34 38 37 -52 -15 99 6 68 -67 -58
13 -17 -85 -99 -20 -33 54 38 -66 8

36 24 27 90 -32 72 -73 11 -85 29
-90 -64 29 -27 91 64 28 -97 44 59
-68 76 -1 -6 -52 77 21 37 80 69

YW UNIVERSITY of WASHINGTON

Contiguous vs. Non-contiguous: array (1)

* Computer memory = one really, really big array.

LEC 04: Linked Nodes

- int[] arr = new int[10];
Memory
85 47 -51 44 -38 35 -58 79 27 -14
-24 -38 -66 -27 36 -1 23 20 31 -40
D -34 38 37 -52 -15 99 6 68 -67 -58
13 -17 -85 -99 -20 -33 54 38 -66 8
36 24 27 90 -32 72 -73 11 -85 29
-90 -64 29 -27 91 64 28 -97 44 59
-68 76 -1 -6 -52 77 21 37 80 69

CSE 123 Winter 2026

YW UNIVERSITY of WASHINGTON

Contiguous vs. Non-contiguous: array (2)

* Computer memory = one really, really big array.

LEC 04: Linked Nodes

- int[] arr = new int[7];
Memory

85 47 -51 44 -38 35 -58 79 27 -14
-24 -38 -66 -27 36 -1 23 20 31 -40
-34 38 37 -52 -15 99 6 68 -67 -58
13 -17 -85 -99 -20 -33 54 38 -66 8

24 27 90 -32 72 -73 11 -85 29

0 0 (%] (%] 0 (%] (%] 44 59
-68 76 -1 -6 -52 77 21 37 80 69

We call this

“contiguous” memory

CSE 123 Winter 2026

YW UNIVERSITY of WASHINGTON LEC 04: Linked Nodes CSE 123 Winter 2026

ListNode

e Java class representing a “node”

* Two fields to store discussed state:
- Fields are public?! We'll come back to this

* Why can ListNode be a field in the ListNode class?

public class ListNode {
public int data;
public ListNode next;

YW UNIVERSITY of WASHINGTON LEC 04: Linked Nodes CSE 123 Winter 2026

Contiguous vs. Non-contiguous: ListNode (1)

* Computer memory = one really, really big array.
ListNode list = new ListNode(1);

list.next = new ListNode(2); Memory
85 47 -51 44 -38 35 -58 79 27 -14
l 1 S't -24 -38 -1 -27 36 -1 23 20 31 -40
-34 38 37 -52 -15 99 6 68 -67 -58
D 13 -17 -85 -99 -20 -33 54 38 -66 8
36 24 27 90 -32 72 -73 11 -85 29
-90 -64 29 -27 91 64 28 -97 44 59
-68 76 -1 -6 -52 77 21 37 80 69

YW UNIVERSITY of WASHINGTON

LEC 04: Linked Nodes

CSE 123 Winter 2026

Contiguous vs. Non-contiguous: ListNode (2)

* Computer memory = one really, really big array.

ListNode list

list.next

list

new ListNode(1l);

new ListNode(2); Memory
85 47 -51 44 -38 35 -58 79 27 -14

-24 1 null -27 36 -1 23 20 31 -40

-34 37 -52 -15 99 6 68 -67 -58

13 -85 -99 -20 -33 54 38 -66 8

36 24 27 90 -32 72 -73 11 -85 29

-90 -64 29 -27 91 64 28 -97 44 59

-68 76 -1 -6 -52 77 21 37 80 69

W UNIVERSITY of WASHINGTON LEC 04: Linked Nodes

CSE 123 Winter 2026

Contiguous vs. Non-contiguous: ListNode (3)

* Computer memory = one really, really big array.
ListNode list = new ListNode(1);

list.next = new ListNode(2); Memory
85 47 -51 44 -38 35 -58 79 27 -14
l 1 S't -24 1 -27 36 -1 23 20 31 -40
-34 -52 -15 99 6 68 -67 -58
13 -99 54 38 -66 8
36 24 2 null -85 29
-90 -64 29 -27 91 64 28 -97 44 59
-68 76 -1 -6 -52 77 21 37 80 69

YW UNIVERSITY of WASHINGTON LEC 04: Linked Nodes CSE 123 Winter 2026

Contiguous vs. Non-contiguous: Summary

* Computer memory = one really, really big array.

e Contiguous memory = impossible to resize directly
- Surrounding stuff in memory (we can’t just overwrite)
- Best we can manage is get more space and copy

* Non-contiguous memory = easy to resize
- Just get some more memory and link it to the rest

LEC 04: Linked Nodes CSE 123 Winter 2026

YW UNIVERSITY of WASHINGTON

Lecture Outline

* Announcements
e Reference Semantics Review

* Contiguous / Non-Contiguous Memory Review

YW UNIVERSITY of WASHINGTON LEC 04: Linked Nodes CSE 123 Winter 2026

Linked Nodes

* We want to create a list of ints “non-contiguously”

* Accomplish this with nodes we link together
- Each node stores an int (data) and a reference to the next node (next)

data next

—

(ol el efg- « g m] |

N—

node

	Default Section
	Slide 1: Linked Nodes
	Slide 2: Lecture Outline
	Slide 3: Announcements
	Slide 4: Lecture Outline
	Slide 5: Reference Semantics
	Slide 6: Reference Semantics
	Slide 7: Reference Semantics
	Slide 8: Reference Semantics
	Slide 9: Reference Semantics
	Slide 10: Reference Semantics
	Slide 11: Lecture Outline
	Slide 12: Contiguous vs. Non-contiguous: Memory
	Slide 13: Contiguous vs. Non-contiguous: array (1)
	Slide 14: Contiguous vs. Non-contiguous: array (2)
	Slide 15: ListNode
	Slide 16: Contiguous vs. Non-contiguous: ListNode (1)
	Slide 17: Contiguous vs. Non-contiguous: ListNode (2)
	Slide 18: Contiguous vs. Non-contiguous: ListNode (3)
	Slide 19: Contiguous vs. Non-contiguous: Summary
	Slide 20: Lecture Outline
	Slide 21: Linked Nodes

