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Announcements

* Programming Assignment O due Wed January 21 at 11:59pm!

* Looking ahead:
- First resubmission opens Wed, January 21
- 10 days out from our first quiz on Tue, January 27 (more detail next week)
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Lecture Outline

* Interface v. Implementation

* Implementing ArraylList
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Revisiting Reflections

* Throughout this course, we’ll ask you to form opinions on topics
- Provide exposure to issues so you can decide for yourself

e Opinions aren’t formed in a vacuum
- Exposure to various viewpoints reinforces/challenges perspectives

- Shouldn’t be making arbitrary decisions
- Rationalization is often important! (Not always necessary, but helps in communication)

* Integrating reflections to in-class components
- Discuss opinions, challenge assumptions, potentially change minds

- Please be respectful of other people’s opinions
- There are no “right” or “wrong” answers to these questions
- Everyone has different experiences with the world that informs their decisions
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Lecture Outline

* Revisiting Reflections

* Implementing ArraylList
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Interface versus Implementation

* Interface: what something should do
* Implementation: how something is done
* These are different!

* Big theme of CSE 123:

choose between different implementations of same interface
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Client versus Implementor

uses
[ Client Code ] —> [ Implementation ]

interface

7\

Client Implementor
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Arrays vs. ArrayLists

int[] arr = new int[x]; List<Integer> al = new ArraylList<>();
int y = arr[0] int y = al.get(9);

- al.add(2);
arr[0] = 5; al.set(@, 5);

int length = arr.length; // Always x int size = al.size(); // Matches # of
// things added

Fundamental data structure Class within java.util

Fixed length lllusion of resizing
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Implementing Data Structures

* No different from designing any other class!
- Specified behavior (List interface):

Method ____________ |Desripton

add(E value) Adds the given value to the end of the list

add(int index, E value) Adds the given value at the given index

remove(E value) Removes the given value if it exists

remove(int index) Removes the value at the given index

get(int index) Returns the value at the given index

set(int index, int value) Updates the value at the given index to the one given
size() Returns the number of elements in the list

- Choose appropriate fields based on behavior

* Just requires some thinking outside the box

CSE 123 Winter 2026



YW UNIVERSITY of WASHINGTON LEC 03: ArrayintList CSE 123 Winter 2026

Lecture Outline

* Revisiting Reflections

* Interface v. Implementation
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ArraylintLists

* For simplicity: only about storing ints (no type variables)

* How do we accomplish resizing magic trick? Two fields:
- int[] elementData; // Where we store elements
- int size; // Storage boundary

al.add(2);
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ArraylintLists

* For simplicity: only about storing ints (no type variables)

* How do we accomplish resizing magic trick? Two fields:
- int[] elementData; // Where we store elements
- int size; // Storage boundary
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al.add(2);
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ArraylintLists

* For simplicity: only about storing ints (no type variables)

* How do we accomplish resizing magic trick? Two fields:
- int[] elementData; // Where we store elements
- int size; // Storage boundary
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ArraylintLists

* For simplicity: only about storing ints (no type variables)

* How do we accomplish resizing magic trick? Two fields:
- int[] elementData; // Where we store elements
- int size; // Storage boundary

%)

al.add(5);
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ArraylintLists

* For simplicity: only about storing ints (no type variables)

* How do we accomplish resizing magic trick? Two fields:
- int[] elementData; // Where we store elements
- int size; // Storage boundary

al.add(5);
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ArraylintLists

* For simplicity: only about storing ints (no type variables)

* How do we accomplish resizing magic trick? Two fields:
- int[] elementData; // Where we store elements
- int size; // Storage boundary

al.add(5);
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ArraylintLists

* For simplicity: only about storing ints (no type variables)

* How do we accomplish resizing magic trick? Two fields:
- int[] elementData; // Where we store elements
- int size; // Storage boundary

al.add(-1);

CSE 123 Winter 2026
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ArraylintLists

* For simplicity: only about storing ints (no type variables)

* How do we accomplish resizing magic trick? Two fields:
- int[] elementData; // Where we store elements
- int size; // Storage boundary

'I o %) 1 2

al.add(-1);
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ArraylintLists

* For simplicity: only about storing ints (no type variables)

* How do we accomplish resizing magic trick? Two fields:
- int[] elementData; // Where we store elements
- int size; // Storage boundary

(] 1 2
‘ 25 -1

al.add(-1);
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ArraylintLists

* For simplicity: only about storing ints (no type variables)

* How do we accomplish resizing magic trick? Two fields:
- int[] elementData; // Where we store elements
- int size; // Storage boundary

é

%) 1 2
EH

al.add(o, 90);
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ArraylintLists

* For simplicity: only about storing ints (no type variables)

* How do we accomplish resizing magic trick? Two fields:
- int[] elementData; // Where we store elements
- int size; // Storage boundary

¢

%) 1 2 3

al.add(o, 90);
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ArraylintLists

* For simplicity: only about storing ints (no type variables)

* How do we accomplish resizing magic trick? Two fields:
- int[] elementData; // Where we store elements
- int size; // Storage boundary

!
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al.add(o, 90);
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ArraylintLists

* For simplicity: only about storing ints (no type variables)

* How do we accomplish resizing magic trick? Two fields:
- int[] elementData; // Where we store elements
- int size; // Storage boundary
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al.add(o, 90);
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ArraylintLists

* For simplicity: only about storing ints (no type variables)

* How do we accomplish resizing magic trick? Two fields:
- int[] elementData; // Where we store elements
- int size; // Storage boundary
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al.add(o, 90);




W UNIVERSITY of WASHINGTON LEC 03: ArrayintList

ArraylintLists

* For simplicity: only about storing ints (no type variables)

* How do we accomplish resizing magic trick? Two fields:

- int[] elementData; // Where we store elements
- int size; // Storage boundary
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al.add(o, 90);
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ArraylintLists

* For simplicity: only about storing ints (no type variables)

* How do we accomplish resizing magic trick? Two fields:

- int[] elementData; // Where we store elements
- int size; // Storage boundary

* Important points:
- size represents how far the curtain is peeled back
- Can’t use a hardcoded value!
- Starting value is always at index 0
- Adding to / removing from beginning requires shifting elements

CSE 123 Winter 2026
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Capacity and Resizing

e Capacity = length of underlying array
e Size = number of user-added elements
* What happens if we run out of space? (size == capacity)

é

%) 1 2 3 4 5 6 7 8 9
0 2.5 151297 213

al.add(2);
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Capacity and Resizing

e Capacity = length of underlying array
e Size = number of user-added elements
* What happens if we run out of space? (size == capacity)
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Capacity and Resizing

e Capacity = length of underlying array
e Size = number of user-added elements
* What happens if we run out of space? (size == capacity)

B)




YW UNIVERSITY of WASHINGTON LEC 03: ArrayintList CSE 123 Winter 2026

Capacity and Resizing

e Capacity = length of underlying array
e Size = number of user-added elements
* What happens if we run out of space? (size == capacity)

[

B)

%) 1 2 3 4 5 6 7 8 9
0 2.5 151297 213
0 2.5 151297 2130
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Capacity and Resizing

e Capacity = length of underlying array
e Size = number of user-added elements
* What happens if we run out of space? (size == capacity)

B)

%) 1 2 3 4 5 6 7 8 9
0 2.5 -1512-97 213

al.add(2);
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Capacity and Resizing

e Capacity = length of underlying array
e Size = number of user-added elements
* What happens if we run out of space? (size == capacity)

B)

%) 1 2 3 4 5 6 7 8 9 10
0 2.5 -1512-97 2130

al.add(2);
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Capacity and Resizing

e Capacity = length of underlying array
e Size = number of user-added elements
* What happens if we run out of space? (size == capacity)

B)

%) 1 2 3 4 5 6 7 8 9 10
0 2.5 151297 2132

al.add(2);
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Capacity and Resizing

* Capacity = length of underlying array
e Size = number of user-added elements

* What happens if we run out of space? (size == capacity)
- We make a new (bigger array) and copy things over
- Another layer to the resizing illusion!

* In reality, we don’t typically add a single spot
- What happens if we add again?
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