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Announcements

• Programming Assignment 0 due Wed January 21 at 11:59pm!

• Looking ahead:
- First resubmission opens Wed, January 21

- 10 days out from our first quiz on Tue, January 27 (more detail next week)
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Lecture Outline

• Revisiting Reflections

• Interface v. Implementation

• Implementing ArrayList
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Revisiting Reflections

• Throughout this course, we’ll ask you to form opinions on topics
- Provide exposure to issues so you can decide for yourself

• Opinions aren’t formed in a vacuum
- Exposure to various viewpoints reinforces/challenges perspectives

- Shouldn’t be making arbitrary decisions
- Rationalization is often important! (Not always necessary, but helps in communication)

• Integrating reflections to in-class components
- Discuss opinions, challenge assumptions, potentially change minds

- Please be respectful of other people’s opinions
- There are no “right” or “wrong” answers to these questions

- Everyone has different experiences with the world that informs their decisions
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Interface versus Implementation

• Interface: what something should do

• Implementation: how something is done

• These are different!

• Big theme of CSE 123: 

 choose between different implementations of same interface
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Client versus Implementor

Client Implementor

Client Code Implementation
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Arrays vs. ArrayLists
Arrays ArrayLists

int[] arr = new int[x]; List<Integer> al = new ArrayList<>();

int y = arr[0] int y = al.get(0);

- al.add(2);

arr[0] = 5; al.set(0, 5);

int length = arr.length;  // Always x int size = al.size();  // Matches # of 
                       // things added

Fundamental data structure Class within java.util

Fixed length Illusion of resizing
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Implementing Data Structures

• No different from designing any other class!
- Specified behavior (List interface):

- Choose appropriate fields based on behavior

• Just requires some thinking outside the box

Method Description

add(E value) Adds the given value to the end of the list

add(int index, E value) Adds the given value at the given index

remove(E value) Removes the given value if it exists

remove(int index) Removes the value at the given index 

get(int index) Returns the value at the given index

set(int index, int value) Updates the value at the given index to the one given

size() Returns the number of elements in the list
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Lecture Outline

• Revisiting Reflections

• Interface v. Implementation

• Implementing ArrayList



CSE 123 Winter 2026LEC 03: ArrayIntList

ArrayIntLists
• For simplicity: only about storing ints (no type variables)

• How do we accomplish resizing magic trick? Two fields:
- int[] elementData;    // Where we store elements
- int size;             // Storage boundary

0 0 0 0 0 0 0 0 0 0

0      1     2     3     4     5     6     7     8     9

al.add(2);
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ArrayIntLists
• For simplicity: only about storing ints (no type variables)

• How do we accomplish resizing magic trick? Two fields:
- int[] elementData;    // Where we store elements
- int size;             // Storage boundary

2 0 0 0 0 0 0 0 0 0
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ArrayIntLists
• For simplicity: only about storing ints (no type variables)

• How do we accomplish resizing magic trick? Two fields:
- int[] elementData;    // Where we store elements
- int size;             // Storage boundary

2 0 0 0 0 0 0 0 0 0

0      1     2     3     4     5     6     7     8     9

al.add(5);
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ArrayIntLists
• For simplicity: only about storing ints (no type variables)

• How do we accomplish resizing magic trick? Two fields:
- int[] elementData;    // Where we store elements
- int size;             // Storage boundary

2 0 0 0 0 0 0 0 0 0

0      1     2     3     4     5     6     7     8     9

al.add(5);
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ArrayIntLists
• For simplicity: only about storing ints (no type variables)

• How do we accomplish resizing magic trick? Two fields:
- int[] elementData;    // Where we store elements
- int size;             // Storage boundary

2 5 0 0 0 0 0 0 0 0

0      1     2     3     4     5     6     7     8     9

al.add(5);
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ArrayIntLists
• For simplicity: only about storing ints (no type variables)

• How do we accomplish resizing magic trick? Two fields:
- int[] elementData;    // Where we store elements
- int size;             // Storage boundary

2 5 0 0 0 0 0 0 0 0

0      1     2     3     4     5     6     7     8     9

al.add(-1);
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ArrayIntLists
• For simplicity: only about storing ints (no type variables)

• How do we accomplish resizing magic trick? Two fields:
- int[] elementData;    // Where we store elements
- int size;             // Storage boundary

2 5 0 0 0 0 0 0 0 0

0      1     2     3     4     5     6     7     8     9

al.add(-1);
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ArrayIntLists
• For simplicity: only about storing ints (no type variables)

• How do we accomplish resizing magic trick? Two fields:
- int[] elementData;    // Where we store elements
- int size;             // Storage boundary

2 5 -1 0 0 0 0 0 0 0

0      1     2     3     4     5     6     7     8     9

al.add(-1);
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ArrayIntLists
• For simplicity: only about storing ints (no type variables)

• How do we accomplish resizing magic trick? Two fields:
- int[] elementData;    // Where we store elements
- int size;             // Storage boundary

2 5 -1 0 0 0 0 0 0 0

0      1     2     3     4     5     6     7     8     9

al.add(0, 0);

?
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ArrayIntLists
• For simplicity: only about storing ints (no type variables)

• How do we accomplish resizing magic trick? Two fields:
- int[] elementData;    // Where we store elements
- int size;             // Storage boundary

2 5 -1 0 0 0 0 0 0 0

0      1     2     3     4     5     6     7     8     9

al.add(0, 0);

!
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ArrayIntLists
• For simplicity: only about storing ints (no type variables)

• How do we accomplish resizing magic trick? Two fields:
- int[] elementData;    // Where we store elements
- int size;             // Storage boundary

2 5 -1 -1 0 0 0 0 0 0

0      1     2     3     4     5     6     7     8     9

al.add(0, 0);

!
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ArrayIntLists
• For simplicity: only about storing ints (no type variables)
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- int size;             // Storage boundary

2 5 5 -1 0 0 0 0 0 0

0      1     2     3     4     5     6     7     8     9

al.add(0, 0);
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ArrayIntLists
• For simplicity: only about storing ints (no type variables)

• How do we accomplish resizing magic trick? Two fields:
- int[] elementData;    // Where we store elements
- int size;             // Storage boundary

2 2 5 -1 0 0 0 0 0 0

0      1     2     3     4     5     6     7     8     9

al.add(0, 0);

!
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ArrayIntLists
• For simplicity: only about storing ints (no type variables)

• How do we accomplish resizing magic trick? Two fields:
- int[] elementData;    // Where we store elements
- int size;             // Storage boundary

0 2 5 -1 0 0 0 0 0 0

0      1     2     3     4     5     6     7     8     9

al.add(0, 0);

B)
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ArrayIntLists
• For simplicity: only about storing ints (no type variables)

• How do we accomplish resizing magic trick? Two fields:
- int[] elementData;    // Where we store elements
- int size;             // Storage boundary

• Important points:
- size represents how far the curtain is peeled back

- Can’t use a hardcoded value!

- Starting value is always at index 0
- Adding to / removing from beginning requires shifting elements
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Capacity and Resizing

• Capacity = length of underlying array

• Size = number of user-added elements

• What happens if we run out of space? (size == capacity)

0 2 5 -1 5 12 -9 7 21 -3

0      1     2     3     4     5     6     7     8     9
?

al.add(2);
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Capacity and Resizing

• Capacity = length of underlying array

• Size = number of user-added elements

• What happens if we run out of space? (size == capacity)

0 2 5 -1 5 12 -9 7 21 -3

0      1     2     3     4     5     6     7     8     9
!

0 0 0 0 0 0 0 0 0 0 0
0      1     2     3     4     5     6     7     8     9     10 
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Capacity and Resizing
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0      1     2     3     4     5     6     7     8     9
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0 2 5 -1 5 12 -9 7 21 -3 0
0      1     2     3     4     5     6     7     8     9     10 
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Capacity and Resizing
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Capacity and Resizing

• Capacity = length of underlying array

• Size = number of user-added elements

• What happens if we run out of space? (size == capacity)

0 2 5 -1 5 12 -9 7 21 -3

0      1     2     3     4     5     6     7     8     9

B)

0 2 5 -1 5 12 -9 7 21 -3 2

0      1     2     3     4     5     6     7     8     9     10 

al.add(2);
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Capacity and Resizing

• Capacity = length of underlying array

• Size = number of user-added elements

• What happens if we run out of space? (size == capacity)
- We make a new (bigger array) and copy things over

- Another layer to the resizing illusion!

• In reality, we don’t typically add a single spot
- What happens if we add again?
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