
CSE 123

Questions during Class?
Raise hand or send here

sli.do #cse123

CSE 123 Winter 2026

Talk to your neighbors:

BEFORE WE START

Brett Wortzman

Arohan Jonah Kavya Eeshani Trien

Ashar Brice Misha Aidan Evan

Sean Chris Kieran Cora Rena

Chloe Elden Sahana Dixon Katharine

Jenny Ishita Anirudh Nhan Anya

Nate Kuhu Crystal

CSE 123 26wi Lecture Tunes

Now playing: CSE 123 26wi Lecture Tunes

Instructor:

TAs:

LEC 03: ArrayIntList

LEC 03

Implementing Data Structures;
ArrayIntList

BEFORE WE START

What did you have breakfast today?

Respond on sli.do!

https://open.spotify.com/playlist/0kFSLp6kKEw6GNZDot0pyT?si=ibDFdyI0Qk-Tgtp8ddHrFw

CSE 123 Winter 2026LEC 03: ArrayIntList

Announcements

• Programming Assignment 0 due Wed January 21 at 11:59pm!

• Looking ahead:
- First resubmission opens Wed, January 21

- 10 days out from our first quiz on Tue, January 27 (more detail next week)

CSE 123 Winter 2026LEC 03: ArrayIntList

Lecture Outline

• Revisiting Reflections

• Interface v. Implementation

• Implementing ArrayList

CSE 123 Winter 2026LEC 03: ArrayIntList

Revisiting Reflections

• Throughout this course, we’ll ask you to form opinions on topics
- Provide exposure to issues so you can decide for yourself

• Opinions aren’t formed in a vacuum
- Exposure to various viewpoints reinforces/challenges perspectives

- Shouldn’t be making arbitrary decisions
- Rationalization is often important! (Not always necessary, but helps in communication)

• Integrating reflections to in-class components
- Discuss opinions, challenge assumptions, potentially change minds

- Please be respectful of other people’s opinions
- There are no “right” or “wrong” answers to these questions

- Everyone has different experiences with the world that informs their decisions

CSE 123 Winter 2026LEC 03: ArrayIntList

Lecture Outline

• Revisiting Reflections

• Interface vs. Implementation

• Implementing ArrayList

CSE 123 Winter 2026LEC 03: ArrayIntList

Interface versus Implementation

• Interface: what something should do

• Implementation: how something is done

• These are different!

• Big theme of CSE 123:

 choose between different implementations of same interface

CSE 123 Winter 2026LEC 03: ArrayIntList

Client versus Implementor

Client Implementor

Client Code Implementation

uses

in
te

rf
ac

e

CSE 123 Winter 2026LEC 03: ArrayIntList

Arrays vs. ArrayLists
Arrays ArrayLists

int[] arr = new int[x]; List<Integer> al = new ArrayList<>();

int y = arr[0] int y = al.get(0);

- al.add(2);

arr[0] = 5; al.set(0, 5);

int length = arr.length; // Always x int size = al.size(); // Matches # of
 // things added

Fundamental data structure Class within java.util

Fixed length Illusion of resizing

CSE 123 Winter 2026LEC 03: ArrayIntList

Implementing Data Structures

• No different from designing any other class!
- Specified behavior (List interface):

- Choose appropriate fields based on behavior

• Just requires some thinking outside the box

Method Description

add(E value) Adds the given value to the end of the list

add(int index, E value) Adds the given value at the given index

remove(E value) Removes the given value if it exists

remove(int index) Removes the value at the given index

get(int index) Returns the value at the given index

set(int index, int value) Updates the value at the given index to the one given

size() Returns the number of elements in the list

CSE 123 Winter 2026LEC 03: ArrayIntList

Lecture Outline

• Revisiting Reflections

• Interface v. Implementation

• Implementing ArrayList

CSE 123 Winter 2026LEC 03: ArrayIntList

ArrayIntLists
• For simplicity: only about storing ints (no type variables)

• How do we accomplish resizing magic trick? Two fields:
- int[] elementData; // Where we store elements
- int size; // Storage boundary

0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9

al.add(2);

CSE 123 Winter 2026LEC 03: ArrayIntList

ArrayIntLists
• For simplicity: only about storing ints (no type variables)

• How do we accomplish resizing magic trick? Two fields:
- int[] elementData; // Where we store elements
- int size; // Storage boundary

0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9

al.add(2);

CSE 123 Winter 2026LEC 03: ArrayIntList

ArrayIntLists
• For simplicity: only about storing ints (no type variables)

• How do we accomplish resizing magic trick? Two fields:
- int[] elementData; // Where we store elements
- int size; // Storage boundary

2 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9

al.add(2);

CSE 123 Winter 2026LEC 03: ArrayIntList

ArrayIntLists
• For simplicity: only about storing ints (no type variables)

• How do we accomplish resizing magic trick? Two fields:
- int[] elementData; // Where we store elements
- int size; // Storage boundary

2 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9

al.add(5);

CSE 123 Winter 2026LEC 03: ArrayIntList

ArrayIntLists
• For simplicity: only about storing ints (no type variables)

• How do we accomplish resizing magic trick? Two fields:
- int[] elementData; // Where we store elements
- int size; // Storage boundary

2 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9

al.add(5);

CSE 123 Winter 2026LEC 03: ArrayIntList

ArrayIntLists
• For simplicity: only about storing ints (no type variables)

• How do we accomplish resizing magic trick? Two fields:
- int[] elementData; // Where we store elements
- int size; // Storage boundary

2 5 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9

al.add(5);

CSE 123 Winter 2026LEC 03: ArrayIntList

ArrayIntLists
• For simplicity: only about storing ints (no type variables)

• How do we accomplish resizing magic trick? Two fields:
- int[] elementData; // Where we store elements
- int size; // Storage boundary

2 5 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9

al.add(-1);

CSE 123 Winter 2026LEC 03: ArrayIntList

ArrayIntLists
• For simplicity: only about storing ints (no type variables)

• How do we accomplish resizing magic trick? Two fields:
- int[] elementData; // Where we store elements
- int size; // Storage boundary

2 5 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9

al.add(-1);

CSE 123 Winter 2026LEC 03: ArrayIntList

ArrayIntLists
• For simplicity: only about storing ints (no type variables)

• How do we accomplish resizing magic trick? Two fields:
- int[] elementData; // Where we store elements
- int size; // Storage boundary

2 5 -1 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9

al.add(-1);

CSE 123 Winter 2026LEC 03: ArrayIntList

CSE 123 Winter 2026LEC 03: ArrayIntList

ArrayIntLists
• For simplicity: only about storing ints (no type variables)

• How do we accomplish resizing magic trick? Two fields:
- int[] elementData; // Where we store elements
- int size; // Storage boundary

2 5 -1 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9

al.add(0, 0);

?

CSE 123 Winter 2026LEC 03: ArrayIntList

ArrayIntLists
• For simplicity: only about storing ints (no type variables)

• How do we accomplish resizing magic trick? Two fields:
- int[] elementData; // Where we store elements
- int size; // Storage boundary

2 5 -1 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9

al.add(0, 0);

!

CSE 123 Winter 2026LEC 03: ArrayIntList

ArrayIntLists
• For simplicity: only about storing ints (no type variables)

• How do we accomplish resizing magic trick? Two fields:
- int[] elementData; // Where we store elements
- int size; // Storage boundary

2 5 -1 -1 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9

al.add(0, 0);

!

CSE 123 Winter 2026LEC 03: ArrayIntList

ArrayIntLists
• For simplicity: only about storing ints (no type variables)

• How do we accomplish resizing magic trick? Two fields:
- int[] elementData; // Where we store elements
- int size; // Storage boundary

2 5 5 -1 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9

al.add(0, 0);

!

CSE 123 Winter 2026LEC 03: ArrayIntList

ArrayIntLists
• For simplicity: only about storing ints (no type variables)

• How do we accomplish resizing magic trick? Two fields:
- int[] elementData; // Where we store elements
- int size; // Storage boundary

2 2 5 -1 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9

al.add(0, 0);

!

CSE 123 Winter 2026LEC 03: ArrayIntList

ArrayIntLists
• For simplicity: only about storing ints (no type variables)

• How do we accomplish resizing magic trick? Two fields:
- int[] elementData; // Where we store elements
- int size; // Storage boundary

0 2 5 -1 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9

al.add(0, 0);

B)

CSE 123 Winter 2026LEC 03: ArrayIntList

ArrayIntLists
• For simplicity: only about storing ints (no type variables)

• How do we accomplish resizing magic trick? Two fields:
- int[] elementData; // Where we store elements
- int size; // Storage boundary

• Important points:
- size represents how far the curtain is peeled back

- Can’t use a hardcoded value!

- Starting value is always at index 0
- Adding to / removing from beginning requires shifting elements

CSE 123 Winter 2026LEC 03: ArrayIntList

Capacity and Resizing

• Capacity = length of underlying array

• Size = number of user-added elements

• What happens if we run out of space? (size == capacity)

0 2 5 -1 5 12 -9 7 21 -3

0 1 2 3 4 5 6 7 8 9
?

al.add(2);

CSE 123 Winter 2026LEC 03: ArrayIntList

Capacity and Resizing

• Capacity = length of underlying array

• Size = number of user-added elements

• What happens if we run out of space? (size == capacity)

0 2 5 -1 5 12 -9 7 21 -3

0 1 2 3 4 5 6 7 8 9
!

0 0 0 0 0 0 0 0 0 0 0
0 1 2 3 4 5 6 7 8 9 10

CSE 123 Winter 2026LEC 03: ArrayIntList

Capacity and Resizing

• Capacity = length of underlying array

• Size = number of user-added elements

• What happens if we run out of space? (size == capacity)

0 2 5 -1 5 12 -9 7 21 -3

0 1 2 3 4 5 6 7 8 9

B)

0 2 5 -1 5 12 -9 7 21 -3 0
0 1 2 3 4 5 6 7 8 9 10

CSE 123 Winter 2026LEC 03: ArrayIntList

Capacity and Resizing

• Capacity = length of underlying array

• Size = number of user-added elements

• What happens if we run out of space? (size == capacity)

0 2 5 -1 5 12 -9 7 21 -3

0 1 2 3 4 5 6 7 8 9

B)

0 2 5 -1 5 12 -9 7 21 -3 0
0 1 2 3 4 5 6 7 8 9 10

CSE 123 Winter 2026LEC 03: ArrayIntList

Capacity and Resizing

• Capacity = length of underlying array

• Size = number of user-added elements

• What happens if we run out of space? (size == capacity)

0 2 5 -1 5 12 -9 7 21 -3

0 1 2 3 4 5 6 7 8 9

B)

0 2 5 -1 5 12 -9 7 21 -3 0

0 1 2 3 4 5 6 7 8 9 10

al.add(2);

CSE 123 Winter 2026LEC 03: ArrayIntList

Capacity and Resizing

• Capacity = length of underlying array

• Size = number of user-added elements

• What happens if we run out of space? (size == capacity)

0 2 5 -1 5 12 -9 7 21 -3

0 1 2 3 4 5 6 7 8 9

B)

0 2 5 -1 5 12 -9 7 21 -3 0

0 1 2 3 4 5 6 7 8 9 10

al.add(2);

CSE 123 Winter 2026LEC 03: ArrayIntList

Capacity and Resizing

• Capacity = length of underlying array

• Size = number of user-added elements

• What happens if we run out of space? (size == capacity)

0 2 5 -1 5 12 -9 7 21 -3

0 1 2 3 4 5 6 7 8 9

B)

0 2 5 -1 5 12 -9 7 21 -3 2

0 1 2 3 4 5 6 7 8 9 10

al.add(2);

CSE 123 Winter 2026LEC 03: ArrayIntList

Capacity and Resizing

• Capacity = length of underlying array

• Size = number of user-added elements

• What happens if we run out of space? (size == capacity)
- We make a new (bigger array) and copy things over

- Another layer to the resizing illusion!

• In reality, we don’t typically add a single spot
- What happens if we add again?

	Default Section
	Slide 1: Implementing Data Structures; ArrayIntList
	Slide 2: Announcements
	Slide 3: Lecture Outline
	Slide 4: Revisiting Reflections
	Slide 5: Lecture Outline
	Slide 6: Interface versus Implementation
	Slide 7: Client versus Implementor
	Slide 8: Arrays vs. ArrayLists
	Slide 9: Implementing Data Structures
	Slide 10: Lecture Outline
	Slide 11: ArrayIntLists
	Slide 12: ArrayIntLists
	Slide 13: ArrayIntLists
	Slide 14: ArrayIntLists
	Slide 15: ArrayIntLists
	Slide 16: ArrayIntLists
	Slide 17: ArrayIntLists
	Slide 18: ArrayIntLists
	Slide 19: ArrayIntLists
	Slide 20
	Slide 21: ArrayIntLists
	Slide 22: ArrayIntLists
	Slide 23: ArrayIntLists
	Slide 24: ArrayIntLists
	Slide 25: ArrayIntLists
	Slide 26: ArrayIntLists
	Slide 27: ArrayIntLists
	Slide 28: Capacity and Resizing
	Slide 29: Capacity and Resizing
	Slide 30: Capacity and Resizing
	Slide 31: Capacity and Resizing
	Slide 32: Capacity and Resizing
	Slide 33: Capacity and Resizing
	Slide 34: Capacity and Resizing
	Slide 35: Capacity and Resizing

