‘W UNIVERSITY of WASHINGTON LEC 03: ArrayintList CSE 123 Winter 2026

Talk to your neighbors:

What did you have breakfast today?

CSE 123 Respond on sli.do!

Instructor: Brett Wortzman
Implementing Data Structures;

A r. r. a y I n -t L i S -t TAS: Arohan Jonah Kavya Eeshani Trien

Ashar Brice Misha Aidan Evan
Sean Chris Kieran Cora Rena
Chloe Elden Sahana Dixon Katharine
Raise hand or send here Jenny Ishita Anirudh Nhan Anya
Nate Kuhu Crystal

slido #csel23

Now playing: 45 CSE 123 26wi Lecture Tunes &

https://open.spotify.com/playlist/0kFSLp6kKEw6GNZDot0pyT?si=ibDFdyI0Qk-Tgtp8ddHrFw

YW UNIVERSITY of WASHINGTON LEC 03: ArrayintList CSE 123 Winter 2026

Announcements

* Programming Assignment O due Wed January 21 at 11:59pm!

* Looking ahead:
- First resubmission opens Wed, January 21
- 10 days out from our first quiz on Tue, January 27 (more detail next week)

YW UNIVERSITY of WASHINGTON LEC 03: ArrayintList CSE 123 Winter 2026

Lecture Outline

* Interface v. Implementation

* Implementing ArraylList

LEC 03: ArrayintList CSE 123 Winter 2026

YW UNIVERSITY of WASHINGTON

Revisiting Reflections

* Throughout this course, we’ll ask you to form opinions on topics
- Provide exposure to issues so you can decide for yourself

e Opinions aren’t formed in a vacuum
- Exposure to various viewpoints reinforces/challenges perspectives

- Shouldn’t be making arbitrary decisions
- Rationalization is often important! (Not always necessary, but helps in communication)

* Integrating reflections to in-class components
- Discuss opinions, challenge assumptions, potentially change minds

- Please be respectful of other people’s opinions
- There are no “right” or “wrong” answers to these questions
- Everyone has different experiences with the world that informs their decisions

YW UNIVERSITY of WASHINGTON LEC 03: ArrayintList CSE 123 Winter 2026

Lecture Outline

* Revisiting Reflections

* Implementing ArraylList

CSE 123 Winter 2026

W UNIVERSITY of WASHINGTON LEC 03: ArrayintList

Interface versus Implementation

* Interface: what something should do
* Implementation: how something is done
* These are different!

* Big theme of CSE 123:

choose between different implementations of same interface

YW UNIVERSITY of WASHINGTON LEC 03: ArrayintList CSE 123 Winter 2026

Client versus Implementor

uses
[Client Code] —> [Implementation]

interface

7\

Client Implementor

LEC 03: ArrayintList CSE 123 Winter 2026

YW UNIVERSITY of WASHINGTON

Arrays vs. ArrayLists

int[] arr = new int[x]; List<Integer> al = new ArraylList<>();
int y = arr[0] int y = al.get(9);

- al.add(2);
arr[0] = 5; al.set(@, 5);

int length = arr.length; // Always x int size = al.size(); // Matches # of
// things added

Fundamental data structure Class within java.util

Fixed length lllusion of resizing

W UNIVERSITY of WASHINGTON LEC 03: ArrayintList

Implementing Data Structures

* No different from designing any other class!
- Specified behavior (List interface):

Method ____________ |Desripton

add(E value) Adds the given value to the end of the list

add(int index, E value) Adds the given value at the given index

remove(E value) Removes the given value if it exists

remove(int index) Removes the value at the given index

get(int index) Returns the value at the given index

set(int index, int value) Updates the value at the given index to the one given
size() Returns the number of elements in the list

- Choose appropriate fields based on behavior

* Just requires some thinking outside the box

CSE 123 Winter 2026

YW UNIVERSITY of WASHINGTON LEC 03: ArrayintList CSE 123 Winter 2026

Lecture Outline

* Revisiting Reflections

* Interface v. Implementation

YW UNIVERSITY of WASHINGTON LEC 03: ArrayintList CSE 123 Winter 2026

ArraylintLists

* For simplicity: only about storing ints (no type variables)

* How do we accomplish resizing magic trick? Two fields:
- int[] elementData; // Where we store elements
- int size; // Storage boundary

al.add(2);

YW UNIVERSITY of WASHINGTON LEC 03: ArrayintList CSE 123 Winter 2026

ArraylintLists

* For simplicity: only about storing ints (no type variables)

* How do we accomplish resizing magic trick? Two fields:
- int[] elementData; // Where we store elements
- int size; // Storage boundary

%)

al.add(2);

YW UNIVERSITY of WASHINGTON LEC 03: ArrayintList CSE 123 Winter 2026

ArraylintLists

* For simplicity: only about storing ints (no type variables)

* How do we accomplish resizing magic trick? Two fields:
- int[] elementData; // Where we store elements
- int size; // Storage boundary

%)

al.add(2);

YW UNIVERSITY of WASHINGTON LEC 03: ArrayintList CSE 123 Winter 2026

ArraylintLists

* For simplicity: only about storing ints (no type variables)

* How do we accomplish resizing magic trick? Two fields:
- int[] elementData; // Where we store elements
- int size; // Storage boundary

%)

al.add(5);

W UNIVERSITY of WASHINGTON LEC 03: ArrayintList

ArraylintLists

* For simplicity: only about storing ints (no type variables)

* How do we accomplish resizing magic trick? Two fields:
- int[] elementData; // Where we store elements
- int size; // Storage boundary

al.add(5);

CSE 123 Winter 2026

W UNIVERSITY of WASHINGTON LEC 03: ArrayintList

ArraylintLists

* For simplicity: only about storing ints (no type variables)

* How do we accomplish resizing magic trick? Two fields:
- int[] elementData; // Where we store elements
- int size; // Storage boundary

al.add(5);

CSE 123 Winter 2026

W UNIVERSITY of WASHINGTON LEC 03: ArrayintList

ArraylintLists

* For simplicity: only about storing ints (no type variables)

* How do we accomplish resizing magic trick? Two fields:
- int[] elementData; // Where we store elements
- int size; // Storage boundary

al.add(-1);

CSE 123 Winter 2026

YW UNIVERSITY of WASHINGTON LEC 03: ArrayintList CSE 123 Winter 2026

ArraylintLists

* For simplicity: only about storing ints (no type variables)

* How do we accomplish resizing magic trick? Two fields:
- int[] elementData; // Where we store elements
- int size; // Storage boundary

'I o %) 1 2

al.add(-1);

YW UNIVERSITY of WASHINGTON LEC 03: ArrayintList CSE 123 Winter 2026

ArraylintLists

* For simplicity: only about storing ints (no type variables)

* How do we accomplish resizing magic trick? Two fields:
- int[] elementData; // Where we store elements
- int size; // Storage boundary

(] 1 2
‘ 25 -1

al.add(-1);

YW UNIVERSITY of WASHINGTON LEC 03: ArraylntList CSE 123 Winter 2026

YW UNIVERSITY of WASHINGTON LEC 03: ArrayintList CSE 123 Winter 2026

ArraylintLists

* For simplicity: only about storing ints (no type variables)

* How do we accomplish resizing magic trick? Two fields:
- int[] elementData; // Where we store elements
- int size; // Storage boundary

é

%) 1 2
EH

al.add(o, 90);

YW UNIVERSITY of WASHINGTON LEC 03: ArrayintList CSE 123 Winter 2026

ArraylintLists

* For simplicity: only about storing ints (no type variables)

* How do we accomplish resizing magic trick? Two fields:
- int[] elementData; // Where we store elements
- int size; // Storage boundary

¢

%) 1 2 3

al.add(o, 90);

YW UNIVERSITY of WASHINGTON LEC 03: ArrayintList CSE 123 Winter 2026

ArraylintLists

* For simplicity: only about storing ints (no type variables)

* How do we accomplish resizing magic trick? Two fields:
- int[] elementData; // Where we store elements
- int size; // Storage boundary

!
(] 1 2 3
‘ 25 -1-1
)

al.add(o, 90);

YW UNIVERSITY of WASHINGTON LEC 03: ArrayintList CSE 123 Winter 2026

ArraylintLists

* For simplicity: only about storing ints (no type variables)

* How do we accomplish resizing magic trick? Two fields:
- int[] elementData; // Where we store elements
- int size; // Storage boundary

!
<4 oo
S)

al.add(o, 90);

YW UNIVERSITY of WASHINGTON LEC 03: ArrayintList CSE 123 Winter 2026

ArraylintLists

* For simplicity: only about storing ints (no type variables)

* How do we accomplish resizing magic trick? Two fields:
- int[] elementData; // Where we store elements
- int size; // Storage boundary

!
<4 oo
)

al.add(o, 90);

W UNIVERSITY of WASHINGTON LEC 03: ArrayintList

ArraylintLists

* For simplicity: only about storing ints (no type variables)

* How do we accomplish resizing magic trick? Two fields:

- int[] elementData; // Where we store elements
- int size; // Storage boundary

B) S ——
I;IHH

al.add(o, 90);

CSE 123 Winter 2026

W UNIVERSITY of WASHINGTON LEC 03: ArrayintList

ArraylintLists

* For simplicity: only about storing ints (no type variables)

* How do we accomplish resizing magic trick? Two fields:

- int[] elementData; // Where we store elements
- int size; // Storage boundary

* Important points:
- size represents how far the curtain is peeled back
- Can’t use a hardcoded value!
- Starting value is always at index 0
- Adding to / removing from beginning requires shifting elements

CSE 123 Winter 2026

W UNIVERSITY of WASHINGTON LEC 03: ArrayintList

CSE 123 Winter 2026

Capacity and Resizing

e Capacity = length of underlying array
e Size = number of user-added elements
* What happens if we run out of space? (size == capacity)

é

%) 1 2 3 4 5 6 7 8 9
0 2.5 151297 213

al.add(2);

YW UNIVERSITY of WASHINGTON LEC 03: ArrayintList CSE 123 Winter 2026

Capacity and Resizing

e Capacity = length of underlying array
e Size = number of user-added elements
* What happens if we run out of space? (size == capacity)

o

%) 1 2 3 4 5 6 7 8 9
%) 1 2 3 4 5 6 7 8 9 10

YW UNIVERSITY of WASHINGTON LEC 03: ArrayintList CSE 123 Winter 2026

Capacity and Resizing

e Capacity = length of underlying array
e Size = number of user-added elements
* What happens if we run out of space? (size == capacity)

B)

YW UNIVERSITY of WASHINGTON LEC 03: ArrayintList CSE 123 Winter 2026

Capacity and Resizing

e Capacity = length of underlying array
e Size = number of user-added elements
* What happens if we run out of space? (size == capacity)

[

B)

%) 1 2 3 4 5 6 7 8 9
0 2.5 151297 213
0 2.5 151297 2130

%) 1 2 3 4 5 6 7 8 9 10

YW UNIVERSITY of WASHINGTON LEC 03: ArrayintList CSE 123 Winter 2026

Capacity and Resizing

e Capacity = length of underlying array
e Size = number of user-added elements
* What happens if we run out of space? (size == capacity)

B)

%) 1 2 3 4 5 6 7 8 9
0 2.5 -1512-97 213

al.add(2);

YW UNIVERSITY of WASHINGTON LEC 03: ArrayintList CSE 123 Winter 2026

Capacity and Resizing

e Capacity = length of underlying array
e Size = number of user-added elements
* What happens if we run out of space? (size == capacity)

B)

%) 1 2 3 4 5 6 7 8 9 10
0 2.5 -1512-97 2130

al.add(2);

YW UNIVERSITY of WASHINGTON LEC 03: ArrayintList CSE 123 Winter 2026

Capacity and Resizing

e Capacity = length of underlying array
e Size = number of user-added elements
* What happens if we run out of space? (size == capacity)

B)

%) 1 2 3 4 5 6 7 8 9 10
0 2.5 151297 2132

al.add(2);

W UNIVERSITY of WASHINGTON LEC 03: ArrayintList

CSE 123 Winter 2026

Capacity and Resizing

* Capacity = length of underlying array
e Size = number of user-added elements

* What happens if we run out of space? (size == capacity)
- We make a new (bigger array) and copy things over
- Another layer to the resizing illusion!

* In reality, we don’t typically add a single spot
- What happens if we add again?

	Default Section
	Slide 1: Implementing Data Structures; ArrayIntList
	Slide 2: Announcements
	Slide 3: Lecture Outline
	Slide 4: Revisiting Reflections
	Slide 5: Lecture Outline
	Slide 6: Interface versus Implementation
	Slide 7: Client versus Implementor
	Slide 8: Arrays vs. ArrayLists
	Slide 9: Implementing Data Structures
	Slide 10: Lecture Outline
	Slide 11: ArrayIntLists
	Slide 12: ArrayIntLists
	Slide 13: ArrayIntLists
	Slide 14: ArrayIntLists
	Slide 15: ArrayIntLists
	Slide 16: ArrayIntLists
	Slide 17: ArrayIntLists
	Slide 18: ArrayIntLists
	Slide 19: ArrayIntLists
	Slide 20
	Slide 21: ArrayIntLists
	Slide 22: ArrayIntLists
	Slide 23: ArrayIntLists
	Slide 24: ArrayIntLists
	Slide 25: ArrayIntLists
	Slide 26: ArrayIntLists
	Slide 27: ArrayIntLists
	Slide 28: Capacity and Resizing
	Slide 29: Capacity and Resizing
	Slide 30: Capacity and Resizing
	Slide 31: Capacity and Resizing
	Slide 32: Capacity and Resizing
	Slide 33: Capacity and Resizing
	Slide 34: Capacity and Resizing
	Slide 35: Capacity and Resizing

