W UNIVERSITY of WASHINGTON LEC 02: Polymorphism; Abstract Classes CSE 123 Winter 2026

Talk to your neighbors:

Coffee or tea? Or something else?

CSE 123 Respond on sli.do!

Instructor: Brett Wortzman

Polymorphism; o
TAS: Arohan Jonah Kavya Eeshani Trien
Abstract Classes v b e

Chloe Elden Sahana Dixon Katharine
Jenny Ishita Anirudh Nhan Anya

Raise hand or send here
Nate Kuhu Crystal

slido #csel23

Now playing: 45 CSE 123 26wi Lecture Tunes &

https://open.spotify.com/playlist/0kFSLp6kKEw6GNZDot0pyT?si=ibDFdyI0Qk-Tgtp8ddHrFw

w UNIVERSITY of WASHINGTON LEC 02: Polymorphism; Abstract Classes CSE 123 Winter 2026

Announcements

* Creative Project O due tonight, Wednesday, January 14 at 11:59pm!
- See generic Creative Project rubric posted on website

* Programming Assignment O will be released tomorrow, Thursday,
January 15 and is due Wednesday, January 21

- Focused on inheritance and abstract classes

* Recruiting students for a research study about the self-placement
- See Ed post #68 for details

https://cs.uw.edu/123/rubrics/#creative-project-rubric
https://edstem.org/us/courses/90027/discussion/7511413

W UNIVERSITY of WASHINGTON LEC 02: Polymorphism; Abstract Classes CSE 123 Winter 2026

Lecture Outline

* Compiler vs. Runtime Errors

e Abstract Classes

W UNIVERSITY of WASHINGTON LEC 02: Polymorphism; Abstract Classes CSE 123 Winter 2026

Polymorphism

« DeclaredType x = new ActualType()
All methods in DeclaredType can be called on x
- We've seen this with interfaces (List<String> vs. ArrayList<String>)

Can also be to inheritance relationships
Important: The Actua L Type determines what method is actually called!

Animal[] arr = {new Animal(), new Dog(), new Husky()};
for (Animal a : arr) {

a.speak();

YW UNIVERSITY of WASHINGTON

LEC 02: Polymorphism; Abstract Classes

Polymorphism

Animal[] arr = {new Animal(), new Dog(), new Husky()};
for (Animal a : arr) {

a.speak();

 DeclaredType x = new ActualType()
- Important:

The Actua lType determines what method is actually called!

CSE 123 Winter 2026

W UNIVERSITY of WASHINGTON LEC 02: Polymorphism; Abstract Classes CSE 123 Winter 2026

Declared Type and Actual Type

DeclaredType varName = new ActualType(..);

ActualType must be asubclass of (or same as) DeclaredType

Animal rufus = new Dog("Rufus"); Dog rufus = new Dog(”Rufus");

Declared Type: Animal Declared Type: Dog

Actual Type: Dog Actual Type: Dog

Can call methods that makes sense for EVERY Animal Can call methods that makes sense for EVERY Dog

If Dog overrides a method, uses the Dog version If Dog overrides a method, uses the Dog version

w UNIVERSITY of WASHINGTON LEC 02: Polymorphism; Abstract Classes CSE 123 Winter 2026

Animal[] arr = {new Animal(), new Dog(), new Husky()};
for (Animal a : arr) {

a.speak();

Suppose Animal, Dog, and Husky all implement speak.

Which version gets called on each iteration of the loop?

W UNIVERSITY of WASHINGTON LEC 02: Polymorphism; Abstract Classes

CSE 123 Winter 2026

Overrldes and MEthOd Ca"S Solution Technique
Animal dubs = new Husky(); .
dubs.speak() ; When running:
Animal Use the most specific version of the method
i call starting from the actual type.
S
Cix
-Iq—JJ © o ”
x| 2 Start from the actual type, then go “up” to
Running: super classes until you find the method. Run
ook this way for speak Dog that first-discovered version.
Use the first :
implementation found "
©
g | o
£l v In this example:
(ORES
If the Husky class overrides speak, then we’ll use the
Actual Type> Husky implementation in Husky. If not, we’ll look in Dog and
use that one if found. If not, then we’ll look in Animal.

W UNIVERSITY of WASHINGTON LEC 02: Polymorphism; Abstract Classes CSE 123 Winter 2026

Lecture Outline

* Polymorphism

e Abstract Classes

w UNIVERSITY of WASHINGTON LEC 02: Polymorphism; Abstract Classes CSE 123 Winter 2026

Compiler vs. Runtime Errors

* DeclaredType x = new ActualType()
- At compile time, Java only knows DeclaredType
- Compiler error: trying to call a method that isn’t present
Animal a = new Dog();
a.bark(); // No bark() -> CE
- Can cast to change the DeclaredType of an object
Dog d = (Dog) a;
d.bark(); // No more CE
- Runtime error: attempting cast to type that is not a superclass of actual type

Animal a = new Fish();
Dog d = (Dog) a; // Can’t cast -> RE

d.bark();

Order matters! Compilation before runtime

YW UNIVERSITY of WASHINGTON

LEC 02: Polymorphism; Abstract Classes CSE 123 Winter 2026

Compiling Method Calls

Animal rufus = new Dog();

rufus.bark();

Compiling:
Look this way for
bark

Declared Type >

Object

extends
lliS a”

Animal

When compiling:

Can we guarantee that the method exists
for the declared type?

Does the declared type or one of its super
classes contain a method of that name?

If not... Compile Error!

In this example:

When compiling, neither Animal nor Object have a bark
method, so we have a compile error!

W UNIVERSITY of WASHINGTON LEC 02: Polymorphism; Abstract Classes CSE 123 Winter 2026

Running Method Calls

Animal rufus = new Dog();

rufus.feed(); When running:
Object Use the most specific version of the method
i call starting from the actual type.
x| Start from the actual type, then go “up” to
Running: super classes until you find the method. Run
Look this way for feed Animal that first-discovered version.
Use the first

implementation found

In this example:

If the Dog class overrides feed, then we’ll use the
Actual Type> Dog Fish implementation in Dog. Otherwise we’ll use the one in
Animal

W UNIVERSITY of WASHINGTON LEC 02: Polymorphism; Abstract Classes CSE 123 Winter 2026

Casts and Method Calls

Animal rufus = new Dog();
Dog d = (Dog) rufus;
d.bark(); Can we guarantee that the method exists

Object for the Cast-to type?

When compiling:

Does the Cast-to type or one of its super

Compiling: classes contain a method of that name?
From cast-to type

Look this way

for bark , If not... Compile Error!
Animal .
When Running:
Running:
From actual type o
Look this way Check that the Cast-to Type is either the
for cast-to type Actual Type, or one of its super classes
Cast-to TypeQ
Actual Type/ Dog Al This example has no error

W UNIVERSITY of WASHINGTON LEC 02: Polymorphism; Abstract Classes CSE 123 Winter 2026

Casts and Method Calls

Animal rufus = new Fish();
Dog d = (Dog) rufus;

d.bark(); Can we guarantee that the method exists
Object for the Cast-to type?

When compiling:

Does the Cast-to type or one of its super

Compiling: classes contain a method of that name?
From cast-to type

Look this way

N — | If not... Compile Error!
Animal .
When Running:
Running:
From actual type ..
Look this way Check that the Cast-to Type is either the
for cast-to type Actual Type, or one of its super classes

Cast-to Type>
Dog Fish Actual Type This example has a runtime error

LEC 02: Polymorphism; Abstract Classes CSE 123 Winter 2026

YW UNIVERSITY of WASHINGTON

Compiler vs. Runtime Errors: Method Calls

Method Calls

Does Declared Type have | DeclaredType var = new ActualType() ;

= the method called?
E Ex. var.method ()
E"- No
S

Yes, move onto
Runtime

=k

= Call the Actual Type

= method definition*

o=

* Start at the Actual Type at run time. If it doesn't exist in Actual Type, trace
up the inheritance tree to find the nearest inherited method definition

CSE 123 Winter 2026

W UNIVERSITY of WASHINGTON LEC 02: Polymorphism; Abstract Classes

Compiler vs. Runtime Errors: Casting

Casting
= Does CastTolype exist?* | peclaredType var = new ActualType () ;
=
%’_ No CastToType newVar = (CastToType) var;
E
© Yes, m0\.fe onto * There are also other reasons why a compiler error can
Runtime occur on a cast, but for CSE 123, we only focus on this case.
= Is Actual Type the same
= or a subtype of the
5 CastTolype?

Yes

Successful Cast!

w UNIVERSITY of WASHINGTON LEC 02: Polymorphism; Abstract Classes CSE 123 Winter 2026

; Practice : Think L sido hcsews

[=]

What is the result of the following code?

A. Compiler Error

Teacher socrates = new Teacher("Socrates", 2400);
System.out.println(socrates.getEmployeeName());
System.out.println(socrates.getYearsExperience());

B. Runtime Error

C.No error—runs to
completion

w UNIVERSITY of WASHINGTON LEC 02: Polymorphism; Abstract Classes CSE 123 Winter 2026

[m] - [m]
e

sliido #csel23

L)] . DAl
an Practice : Pair

[a]

What is the result of the following code?

A. Compiler Error

Teacher socrates = new Teacher("Socrates", 2400);
System.out.println(socrates.getEmployeeName());
System.out.println(socrates.getYearsExperience());

B. Runtime Error

C.No error—runs to
completion

w UNIVERSITY of WASHINGTON LEC 02: Polymorphism; Abstract Classes CSE 123 Winter 2026

; Practice : Think L sido hcsews

[=]

What is the result of the following code?

A. Compiler Error

Employee anthony = new Chef("Anthony Bourdain");
System.out.println(anthony.getEmployeeName());
anthony.cookFood("shrimp");

B. Runtime Error

C.No error—runs to
completion

w UNIVERSITY of WASHINGTON LEC 02: Polymorphism; Abstract Classes CSE 123 Winter 2026

[m] - [m]
e

sliido #csel23

L)] . DAl
an Practice : Pair

[a]

What is the result of the following code?

A. Compiler Error

Employee anthony = new Chef("Anthony Bourdain");
System.out.println(anthony.getEmployeeName());
anthony.cookFood("shrimp");

B. Runtime Error

C.No error—runs to
completion

LEC 02: Polymorphism; Abstract Classes CSE 123 Winter 2026

YW UNIVERSITY of WASHINGTON

; Practice : Think Z B slido dese1zs

What is the result of the following code?

A. Compiler Error

Employee anthony = new Chef("Anthony Bourdain"); .
System.out.println(anthony.getEmployeeName()); B. Runtime Error

Chef c = (Chef) anthony;
c.cookFood("shrimp"); C. No error—runs to

completion

LEC 02: Polymorphism; Abstract Classes CSE 123 Winter 2026

YW UNIVERSITY of WASHINGTON

: : of o .
Practice : Pair i fiifo Sazile

| 2
)
What is the result of the following code?

A. Compiler Error

Employee anthony = new Chef("Anthony Bourdain"); .
System.out.println(anthony.getEmployeeName()); B. Runtime Error

Chef c = (Chef) anthony;
c.cookFood("shrimp"); C. No error—runs to

completion

LEC 02: Polymorphism; Abstract Classes CSE 123 Winter 2026

YW UNIVERSITY of WASHINGTON

; Practice : Think Z B slido dese1zs

What is the result of the following code?

A. Compiler Error

Employee anthony = new Chef("Anthony Bourdain"); .
System.out.println(anthony.getEmployeeName()); B. Runtime Error

Teacher t = (Teacher) anthony;
t.getYearsExperience(); C. No error—runs to

completion

LEC 02: Polymorphism; Abstract Classes CSE 123 Winter 2026

YW UNIVERSITY of WASHINGTON

: : of o .
Practice : Pair i fiifo Sazile

| 2
)
What is the result of the following code?

A. Compiler Error

Employee anthony = new Chef("Anthony Bourdain"); .
System.out.println(anthony.getEmployeeName()); B. Runtime Error

Teacher t = (Teacher) anthony;
t.getYearsExperience(); C. No error—runs to

completion

W UNIVERSITY of WASHINGTON LEC 02: Polymorphism; Abstract Classes CSE 123 Winter 2026

Lecture Outline
* Polymorphism

* Compiler vs. Runtime Errors

W UNIVERSITY of WASHINGTON LEC 02: Polymorphism; Abstract Classes CSE 123 Winter 2026

Abstract Classes

e Mixture of Interfaces and Classes

- Interface similarities:
- Can contain (abstract) method declarations
- Can’t be instantiated

- Class similarities:

- Can contain method implementations
- Can have fields
- Can have constructors

* |s there identical / nearly similar behavior between classes that
shouldn’t inherit from one another?

w UNIVERSITY of WASHINGTON LEC 02: Polymorphism; Abstract Classes CSE 123 Winter 2026

Advanced OOP Summary

Abstract
* Allow us to define differing levels of abstraction

- Interfaces = high-level specification Interfaces
- What behavior should this type of class have

- Abstract classes = shared behavior + high-level specification

- Classes = individual behavior implementation Abstract
* Inheritance allows us to share code via “is-a” relationships Classes
- Reduce redundancy / repeated code & enable polymorphism
- Still might not be the “best” decision!
- Interfaces extend other interfaces
- (abstract) classes extend other (abstract) classes

Concrete

* You’re now capable of designing some pretty complex systems!

W UNIVERSITY of WASHINGTON LEC 02: Polymorphism; Abstract Classes CSE 123 Winter 2026

Design in the “real world”

* In this course, we’ll always give you expected behavior of the classes
you write
- Often not the case when programming for real
- Clients don’t really know what they want (but programmers don’t either)

* My advice:
- Clarify assumptions before making them (do | really want this functionality?)

- There’s no one right answer
- Weigh the options, make a decision, and provide explanation
- lterative development: make mistakes and learn from them
- Be receptive to feedback and be willing to change your mind

CSE 123 Winter 2026

W UNIVERSITY of WASHINGTON LEC 02: Polymorphism; Abstract Classes

Interface versus Implementation

* Interface: what something should do
* Implementation: how something is done
* These are different!

* Big theme of CSE 123:

choose between different implementations of same interface

	Slide 1: Polymorphism; Abstract Classes
	Slide 2: Announcements
	Slide 3: Lecture Outline
	Slide 4: Polymorphism
	Slide 5: Polymorphism
	Slide 6: Declared Type and Actual Type
	Slide 7: Polymorphism
	Slide 8: Overrides and Method Calls
	Slide 9: Lecture Outline
	Slide 10: Compiler vs. Runtime Errors
	Slide 11: Compiling Method Calls
	Slide 12: Running Method Calls
	Slide 13: Casts and Method Calls
	Slide 14: Casts and Method Calls
	Slide 15: Compiler vs. Runtime Errors: Method Calls
	Slide 16: Compiler vs. Runtime Errors: Casting
	Slide 17: What is the result of the following code?
	Slide 18: What is the result of the following code?
	Slide 19: What is the result of the following code?
	Slide 20: What is the result of the following code?
	Slide 21: What is the result of the following code?
	Slide 22: What is the result of the following code?
	Slide 23: What is the result of the following code?
	Slide 24: What is the result of the following code?
	Slide 25: Lecture Outline
	Slide 26: Abstract Classes
	Slide 27: Advanced OOP Summary
	Slide 28: Design in the “real world”
	Slide 29: Interface versus Implementation

