
CSE 123

Questions during Class?
Raise hand or send here

sli.do #cse123

CSE 123 Winter 2026

Talk to your neighbors:

BEFORE WE START

Brett Wortzman

Arohan Jonah Kavya Eeshani Trien

Ashar Brice Misha Aidan Evan

Sean Chris Kieran Cora Rena

Chloe Elden Sahana Dixon Katharine

Jenny Ishita Anirudh Nhan Anya

Nate Kuhu Crystal

CSE 123 26wi Lecture Tunes

Now playing: CSE 123 26wi Lecture Tunes

Instructor:

TAs:

LEC 02: Polymorphism; Abstract Classes

LEC 02

Polymorphism;
Abstract Classes

BEFORE WE START

Coffee or tea? Or something else?

Respond on sli.do!

https://open.spotify.com/playlist/0kFSLp6kKEw6GNZDot0pyT?si=ibDFdyI0Qk-Tgtp8ddHrFw

CSE 123 Winter 2026LEC 02: Polymorphism; Abstract Classes

Announcements

• Creative Project 0 due tonight, Wednesday, January 14 at 11:59pm!
- See generic Creative Project rubric posted on website

• Programming Assignment 0 will be released tomorrow, Thursday,
January 15 and is due Wednesday, January 21

- Focused on inheritance and abstract classes

• Recruiting students for a research study about the self-placement
- See Ed post #68 for details

https://cs.uw.edu/123/rubrics/#creative-project-rubric
https://edstem.org/us/courses/90027/discussion/7511413

CSE 123 Winter 2026LEC 02: Polymorphism; Abstract Classes

Lecture Outline

• Polymorphism

• Compiler vs. Runtime Errors

• Abstract Classes

CSE 123 Winter 2026LEC 02: Polymorphism; Abstract Classes

Polymorphism
• DeclaredType x = new ActualType()

- All methods in DeclaredType can be called on x

- We’ve seen this with interfaces (List<String> vs. ArrayList<String>)

- Can also be to inheritance relationships

- Important: The ActualType determines what method is actually called!

Animal[] arr = {new Animal(), new Dog(), new Husky()};

for (Animal a : arr) {

 a.speak();

}

CSE 123 Winter 2026LEC 02: Polymorphism; Abstract Classes

Polymorphism

Animal[] arr = {new Animal(), new Dog(), new Husky()};

for (Animal a : arr) {

 a.speak();

}

• DeclaredType x = new ActualType()

- Important:

 The ActualType determines what method is actually called!

CSE 123 Winter 2026LEC 02: Polymorphism; Abstract Classes

Declared Type and Actual Type

Dog rufus = new Dog(”Rufus");Animal rufus = new Dog("Rufus");

DeclaredType varName = new ActualType(…);

Declared Type: Animal
Actual Type: Dog

Can call methods that makes sense for EVERY Animal
If Dog overrides a method, uses the Dog version

Declared Type: Dog
Actual Type: Dog

Can call methods that makes sense for EVERY Dog
If Dog overrides a method, uses the Dog version

ActualType must be a subclass of (or same as) DeclaredType

CSE 123 Winter 2026LEC 02: Polymorphism; Abstract Classes

Polymorphism

Animal[] arr = {new Animal(), new Dog(), new Husky()};

for (Animal a : arr) {

 a.speak();

}

Suppose Animal, Dog, and Husky all implement speak.

Which version gets called on each iteration of the loop?

Typical Problem

CSE 123 Winter 2026LEC 02: Polymorphism; Abstract Classes

Overrides and Method Calls

Animal

Dog

Husky

ex
te

n
d

s
“i

s
a”

When running:

Use the most specific version of the method
call starting from the actual type.

Start from the actual type, then go “up” to
super classes until you find the method. Run
that first-discovered version.

Actual Type

Animal dubs = new Husky();
dubs.speak();

Running:
Look this way for speak

Use the first
implementation found

In this example:

If the Husky class overrides speak, then we’ll use the
implementation in Husky. If not, we’ll look in Dog and
use that one if found. If not, then we’ll look in Animal.

ex
te

n
d

s
“i

s
a”

Solution Technique

CSE 123 Winter 2026LEC 02: Polymorphism; Abstract Classes

Lecture Outline

• Polymorphism

• Compiler vs. Runtime Errors

• Abstract Classes

CSE 123 Winter 2026LEC 02: Polymorphism; Abstract Classes

Compiler vs. Runtime Errors
• DeclaredType x = new ActualType()

- At compile time, Java only knows DeclaredType

- Compiler error: trying to call a method that isn’t present

 Animal a = new Dog();

 a.bark(); // No bark() -> CE

- Can cast to change the DeclaredType of an object
 Dog d = (Dog) a;

 d.bark(); // No more CE

- Runtime error: attempting cast to type that is not a superclass of actual type

 Animal a = new Fish();
 Dog d = (Dog) a; // Can’t cast -> RE

 d.bark();

- Order matters! Compilation before runtime

CSE 123 Winter 2026LEC 02: Polymorphism; Abstract Classes

Compiling Method Calls

When compiling:

Can we guarantee that the method exists
for the declared type?

Does the declared type or one of its super
classes contain a method of that name?

If not… Compile Error!

Animal rufus = new Dog();
rufus.bark();

Compiling:
Look this way for

bark

Declared Type

Object

Animal

Dog Fish

ex
te

n
d

s
“i

s
a”

In this example:

When compiling, neither Animal nor Object have a bark
method, so we have a compile error!

CSE 123 Winter 2026LEC 02: Polymorphism; Abstract Classes

Running Method Calls

Object

Animal

Dog Fish

ex
te

n
d

s
“i

s
a”

When running:

Use the most specific version of the method
call starting from the actual type.

Start from the actual type, then go “up” to
super classes until you find the method. Run
that first-discovered version.

Actual Type

Animal rufus = new Dog();
rufus.feed();

Running:
Look this way for feed

Use the first
implementation found

In this example:

If the Dog class overrides feed, then we’ll use the
implementation in Dog. Otherwise we’ll use the one in
Animal

CSE 123 Winter 2026LEC 02: Polymorphism; Abstract Classes

Actual Type

Casts and Method Calls

Object

Animal

Dog Fish

Compiling:
From cast-to type

Look this way
for bark

Running:
From actual type

Look this way
for cast-to type

Animal rufus = new Dog();
Dog d = (Dog) rufus;
d.bark();

When compiling:

Can we guarantee that the method exists
for the Cast-to type?

Does the Cast-to type or one of its super
classes contain a method of that name?

If not… Compile Error!
When Running:

Check that the Cast-to Type is either the
Actual Type, or one of its super classes

Cast-to Type

This example has no error

CSE 123 Winter 2026LEC 02: Polymorphism; Abstract Classes

Actual Type

Casts and Method Calls

Object

Animal

Dog Fish

Compiling:
From cast-to type

Look this way
for bark

Running:
From actual type

Look this way
for cast-to type

Animal rufus = new Fish();
Dog d = (Dog) rufus;
d.bark();

When compiling:

Can we guarantee that the method exists
for the Cast-to type?

Does the Cast-to type or one of its super
classes contain a method of that name?

If not… Compile Error!
When Running:

Check that the Cast-to Type is either the
Actual Type, or one of its super classes

Cast-to Type

This example has a runtime error

CSE 123 Winter 2026LEC 02: Polymorphism; Abstract Classes

Compiler vs. Runtime Errors: Method Calls

CSE 123 Winter 2026LEC 02: Polymorphism; Abstract Classes

Compiler vs. Runtime Errors: Casting

CSE 123 Winter 2026LEC 02: Polymorphism; Abstract Classes

sli.do #cse123Practice : Think

What is the result of the following code?

Teacher socrates = new Teacher("Socrates", 2400);
System.out.println(socrates.getEmployeeName());
System.out.println(socrates.getYearsExperience());

A. Compiler Error

B. Runtime Error

C. No error– runs to
completion

CSE 123 Winter 2026LEC 02: Polymorphism; Abstract Classes

sli.do #cse123Practice : Pair

What is the result of the following code?

Teacher socrates = new Teacher("Socrates", 2400);
System.out.println(socrates.getEmployeeName());
System.out.println(socrates.getYearsExperience());

A. Compiler Error

B. Runtime Error

C. No error– runs to
completion

CSE 123 Winter 2026LEC 02: Polymorphism; Abstract Classes

sli.do #cse123Practice : Think

What is the result of the following code?

Employee anthony = new Chef("Anthony Bourdain");
System.out.println(anthony.getEmployeeName());
anthony.cookFood("shrimp");

A. Compiler Error

B. Runtime Error

C. No error– runs to
completion

CSE 123 Winter 2026LEC 02: Polymorphism; Abstract Classes

sli.do #cse123Practice : Pair

What is the result of the following code?

Employee anthony = new Chef("Anthony Bourdain");
System.out.println(anthony.getEmployeeName());
anthony.cookFood("shrimp");

A. Compiler Error

B. Runtime Error

C. No error– runs to
completion

CSE 123 Winter 2026LEC 02: Polymorphism; Abstract Classes

sli.do #cse123Practice : Think

What is the result of the following code?

Employee anthony = new Chef("Anthony Bourdain");
System.out.println(anthony.getEmployeeName());
Chef c = (Chef) anthony;
c.cookFood("shrimp");

A. Compiler Error

B. Runtime Error

C. No error– runs to
completion

CSE 123 Winter 2026LEC 02: Polymorphism; Abstract Classes

sli.do #cse123Practice : Pair

What is the result of the following code?

Employee anthony = new Chef("Anthony Bourdain");
System.out.println(anthony.getEmployeeName());
Chef c = (Chef) anthony;
c.cookFood("shrimp");

A. Compiler Error

B. Runtime Error

C. No error– runs to
completion

CSE 123 Winter 2026LEC 02: Polymorphism; Abstract Classes

sli.do #cse123Practice : Think

What is the result of the following code?

Employee anthony = new Chef("Anthony Bourdain");
System.out.println(anthony.getEmployeeName());
Teacher t = (Teacher) anthony;
t.getYearsExperience();

A. Compiler Error

B. Runtime Error

C. No error– runs to
completion

CSE 123 Winter 2026LEC 02: Polymorphism; Abstract Classes

sli.do #cse123Practice : Pair

What is the result of the following code?

Employee anthony = new Chef("Anthony Bourdain");
System.out.println(anthony.getEmployeeName());
Teacher t = (Teacher) anthony;
t.getYearsExperience();

A. Compiler Error

B. Runtime Error

C. No error– runs to
completion

CSE 123 Winter 2026LEC 02: Polymorphism; Abstract Classes

Lecture Outline

• Polymorphism

• Compiler vs. Runtime Errors

• Abstract Classes

CSE 123 Winter 2026LEC 02: Polymorphism; Abstract Classes

Abstract Classes

• Mixture of Interfaces and Classes
- Interface similarities:

- Can contain (abstract) method declarations

- Can’t be instantiated

- Class similarities:
- Can contain method implementations

- Can have fields

- Can have constructors

• Is there identical / nearly similar behavior between classes that
shouldn’t inherit from one another?

Interfaces

Abstract
Classes

Classes

CSE 123 Winter 2026LEC 02: Polymorphism; Abstract Classes

Advanced OOP Summary

• Allow us to define differing levels of abstraction
- Interfaces = high-level specification

- What behavior should this type of class have

- Abstract classes = shared behavior + high-level specification

- Classes = individual behavior implementation

• Inheritance allows us to share code via “is-a” relationships
- Reduce redundancy / repeated code & enable polymorphism

- Still might not be the “best” decision!

- Interfaces extend other interfaces

- (abstract) classes extend other (abstract) classes

Interfaces

Abstract
Classes

Classes

Abstract

Concrete

• You’re now capable of designing some pretty complex systems!

CSE 123 Winter 2026LEC 02: Polymorphism; Abstract Classes

Design in the “real world”

• In this course, we’ll always give you expected behavior of the classes
you write

- Often not the case when programming for real

- Clients don’t really know what they want (but programmers don’t either)

• My advice:
- Clarify assumptions before making them (do I really want this functionality?)

- There’s no one right answer
- Weigh the options, make a decision, and provide explanation

- Iterative development: make mistakes and learn from them

- Be receptive to feedback and be willing to change your mind

CSE 123 Winter 2026LEC 02: Polymorphism; Abstract Classes

Interface versus Implementation

• Interface: what something should do

• Implementation: how something is done

• These are different!

• Big theme of CSE 123:

 choose between different implementations of same interface

	Slide 1: Polymorphism; Abstract Classes
	Slide 2: Announcements
	Slide 3: Lecture Outline
	Slide 4: Polymorphism
	Slide 5: Polymorphism
	Slide 6: Declared Type and Actual Type
	Slide 7: Polymorphism
	Slide 8: Overrides and Method Calls
	Slide 9: Lecture Outline
	Slide 10: Compiler vs. Runtime Errors
	Slide 11: Compiling Method Calls
	Slide 12: Running Method Calls
	Slide 13: Casts and Method Calls
	Slide 14: Casts and Method Calls
	Slide 15: Compiler vs. Runtime Errors: Method Calls
	Slide 16: Compiler vs. Runtime Errors: Casting
	Slide 17: What is the result of the following code?
	Slide 18: What is the result of the following code?
	Slide 19: What is the result of the following code?
	Slide 20: What is the result of the following code?
	Slide 21: What is the result of the following code?
	Slide 22: What is the result of the following code?
	Slide 23: What is the result of the following code?
	Slide 24: What is the result of the following code?
	Slide 25: Lecture Outline
	Slide 26: Abstract Classes
	Slide 27: Advanced OOP Summary
	Slide 28: Design in the “real world”
	Slide 29: Interface versus Implementation

