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Announcements

• Creative Project 0 due tonight, Wednesday, January 14 at 11:59pm!
- See generic Creative Project rubric posted on website 

• Programming Assignment 0 will be released tomorrow, Thursday, 
January 15 and is due Wednesday, January 21

- Focused on inheritance and abstract classes

• Recruiting students for a research study about the self-placement
- See Ed post #68 for details

https://cs.uw.edu/123/rubrics/#creative-project-rubric
https://edstem.org/us/courses/90027/discussion/7511413
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Lecture Outline

• Polymorphism

• Compiler vs. Runtime Errors

• Abstract Classes
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Polymorphism
• DeclaredType x = new ActualType()

- All methods in DeclaredType can be called on x

- We’ve seen this with interfaces (List<String> vs.  ArrayList<String>)

- Can also be to inheritance relationships

- Important: The ActualType determines what method is actually called!

Animal[] arr = {new Animal(), new Dog(), new Husky()};

for (Animal a : arr) {

    a.speak();

}
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Polymorphism

Animal[] arr = {new Animal(), new Dog(), new Husky()};

for (Animal a : arr) {

    a.speak();

}

• DeclaredType x = new ActualType()

- Important: 
 

    The ActualType determines what method is actually called!
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Declared Type and Actual Type

Dog rufus = new Dog(”Rufus");Animal rufus = new Dog("Rufus");

DeclaredType varName = new ActualType(…);

Declared Type: Animal
Actual Type: Dog

Can call methods that makes sense for EVERY Animal
If Dog overrides a method, uses the Dog version

Declared Type: Dog
Actual Type: Dog

Can call methods that makes sense for EVERY Dog
If Dog overrides a method, uses the Dog version

ActualType must be a subclass of (or same as) DeclaredType
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Polymorphism

Animal[] arr = {new Animal(), new Dog(), new Husky()};

for (Animal a : arr) {

    a.speak();

}

Suppose Animal, Dog, and Husky all implement speak.

Which version gets called on each iteration of the loop?

Typical Problem
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Overrides and Method Calls

Animal

Dog

Husky
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s 
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When running:

Use the most specific version of the method 
call starting from the actual type.

Start from the actual type, then go “up” to 
super classes until you find the method. Run 
that first-discovered version.

Actual Type

Animal dubs = new Husky();
dubs.speak();

Running:
Look this way for speak

Use the first 
implementation found

In this example:

If the Husky class overrides speak, then we’ll use the 
implementation in Husky. If not, we’ll look in Dog and 
use that one if found. If not, then we’ll look in Animal.

ex
te

n
d

s
“i

s 
a”

Solution Technique
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Lecture Outline

• Polymorphism

• Compiler vs. Runtime Errors

• Abstract Classes
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Compiler vs. Runtime Errors
• DeclaredType x = new ActualType()

- At compile time, Java only knows DeclaredType

- Compiler error: trying to call a method that isn’t present

        Animal a = new Dog();

     a.bark();               // No bark() -> CE

- Can cast to change the DeclaredType of an object
          Dog d = (Dog) a;

          d.bark();               // No more CE

- Runtime error: attempting cast to type that is not a superclass of actual type

     Animal a = new Fish();
        Dog d = (Dog) a;        // Can’t cast -> RE

        d.bark(); 

- Order matters! Compilation before runtime
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Compiling Method Calls

When compiling:

Can we guarantee that the method exists 
for the declared type?

Does the declared type or one of its super 
classes contain a method of that name?

If not… Compile Error!

Animal rufus = new Dog();
rufus.bark();

Compiling:
Look this way for 

bark

Declared Type

Object

Animal

Dog Fish

ex
te

n
d

s
“i

s 
a”

In this example:

When compiling, neither Animal nor Object have a bark 
method, so we have a compile error!
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Running Method Calls

Object

Animal

Dog Fish

ex
te

n
d

s
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s 
a”

When running:

Use the most specific version of the method 
call starting from the actual type.

Start from the actual type, then go “up” to 
super classes until you find the method. Run 
that first-discovered version.

Actual Type

Animal rufus = new Dog();
rufus.feed();

Running:
Look this way for feed

Use the first 
implementation found

In this example:

If the Dog class overrides feed, then we’ll use the 
implementation in Dog. Otherwise we’ll use the one in 
Animal
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Actual Type

Casts and Method Calls

Object

Animal

Dog Fish

Compiling:
From cast-to type

Look this way 
for bark

Running:
From actual type

Look this way 
for cast-to type 

Animal rufus = new Dog();
Dog d = (Dog) rufus;
d.bark();

When compiling:

Can we guarantee that the method exists 
for the Cast-to type? 

Does the Cast-to type or one of its super 
classes contain a method of that name?

If not… Compile Error!
When Running:

Check that the Cast-to Type is either the 
Actual Type, or one of its super classes

Cast-to Type

This example has no error
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Actual Type

Casts and Method Calls

Object

Animal

Dog Fish

Compiling:
From cast-to type

Look this way 
for bark

Running:
From actual type

Look this way 
for cast-to type 

Animal rufus = new Fish();
Dog d = (Dog) rufus;
d.bark();

When compiling:

Can we guarantee that the method exists 
for the Cast-to type? 

Does the Cast-to type or one of its super 
classes contain a method of that name?

If not… Compile Error!
When Running:

Check that the Cast-to Type is either the 
Actual Type, or one of its super classes

Cast-to Type

This example has a runtime error
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Compiler vs. Runtime Errors: Method Calls
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Compiler vs. Runtime Errors: Casting
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sli.do      #cse123Practice : Think

What is the result of the following code?

Teacher socrates = new Teacher("Socrates", 2400);
System.out.println(socrates.getEmployeeName());
System.out.println(socrates.getYearsExperience());

A. Compiler Error

B. Runtime Error

C. No error– runs to 
completion
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sli.do      #cse123Practice : Pair

What is the result of the following code?

Teacher socrates = new Teacher("Socrates", 2400);
System.out.println(socrates.getEmployeeName());
System.out.println(socrates.getYearsExperience());

A. Compiler Error

B. Runtime Error

C. No error– runs to 
completion
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sli.do      #cse123Practice : Think

What is the result of the following code?

Employee anthony = new Chef("Anthony Bourdain");
System.out.println(anthony.getEmployeeName());
anthony.cookFood("shrimp");

A. Compiler Error

B. Runtime Error

C. No error– runs to 
completion



CSE 123 Winter 2026LEC 02: Polymorphism; Abstract Classes

sli.do      #cse123Practice : Pair

What is the result of the following code?

Employee anthony = new Chef("Anthony Bourdain");
System.out.println(anthony.getEmployeeName());
anthony.cookFood("shrimp");

A. Compiler Error

B. Runtime Error

C. No error– runs to 
completion



CSE 123 Winter 2026LEC 02: Polymorphism; Abstract Classes

sli.do      #cse123Practice : Think

What is the result of the following code?

Employee anthony = new Chef("Anthony Bourdain");
System.out.println(anthony.getEmployeeName());
Chef c = (Chef) anthony;
c.cookFood("shrimp");

A. Compiler Error

B. Runtime Error

C. No error– runs to 
completion
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sli.do      #cse123Practice : Pair

What is the result of the following code?

Employee anthony = new Chef("Anthony Bourdain");
System.out.println(anthony.getEmployeeName());
Chef c = (Chef) anthony;
c.cookFood("shrimp");

A. Compiler Error

B. Runtime Error

C. No error– runs to 
completion
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sli.do      #cse123Practice : Think

What is the result of the following code?

Employee anthony = new Chef("Anthony Bourdain");
System.out.println(anthony.getEmployeeName());
Teacher t = (Teacher) anthony;
t.getYearsExperience();

A. Compiler Error

B. Runtime Error

C. No error– runs to 
completion
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sli.do      #cse123Practice : Pair

What is the result of the following code?

Employee anthony = new Chef("Anthony Bourdain");
System.out.println(anthony.getEmployeeName());
Teacher t = (Teacher) anthony;
t.getYearsExperience();

A. Compiler Error

B. Runtime Error

C. No error– runs to 
completion
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Lecture Outline

• Polymorphism

• Compiler vs. Runtime Errors

• Abstract Classes
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Abstract Classes

• Mixture of Interfaces and Classes
- Interface similarities:

- Can contain (abstract) method declarations

- Can’t be instantiated

- Class similarities:
- Can contain method implementations

- Can have fields

- Can have constructors

• Is there identical / nearly similar behavior between classes that 
shouldn’t inherit from one another?

Interfaces

Abstract 
Classes

Classes
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Advanced OOP Summary

• Allow us to define differing levels of abstraction
- Interfaces = high-level specification

- What behavior should this type of class have

- Abstract classes = shared behavior + high-level specification

- Classes = individual behavior implementation

• Inheritance allows us to share code via “is-a” relationships
- Reduce redundancy / repeated code & enable polymorphism

- Still might not be the “best” decision!

- Interfaces extend other interfaces

- (abstract) classes extend other (abstract) classes

Interfaces

Abstract 
Classes

Classes

Abstract

Concrete

• You’re now capable of designing some pretty complex systems!
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Design in the “real world”

• In this course, we’ll always give you expected behavior of the classes 
you write

- Often not the case when programming for real

- Clients don’t really know what they want (but programmers don’t either)

• My advice:
- Clarify assumptions before making them (do I really want this functionality?)

- There’s no one right answer
- Weigh the options, make a decision, and provide explanation

- Iterative development: make mistakes and learn from them

- Be receptive to feedback and be willing to change your mind
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Interface versus Implementation

• Interface: what something should do

• Implementation: how something is done

• These are different!

• Big theme of CSE 123: 

 choose between different implementations of same interface
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