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Announcements

* Creative Project O due tonight, Wednesday, January 14 at 11:59pm!
- See generic Creative Project rubric posted on website

* Programming Assignment O will be released tomorrow, Thursday,
January 15 and is due Wednesday, January 21

- Focused on inheritance and abstract classes

* Recruiting students for a research study about the self-placement
- See Ed post #68 for details



https://cs.uw.edu/123/rubrics/#creative-project-rubric
https://edstem.org/us/courses/90027/discussion/7511413
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Lecture Outline

* Compiler vs. Runtime Errors

e Abstract Classes
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Polymorphism

« DeclaredType x = new ActualType()
All methods in DeclaredType can be called on x
- We've seen this with interfaces (List<String> vs. ArrayList<String>)

Can also be to inheritance relationships
Important: The Actua L Type determines what method is actually called!

Animal[] arr = {new Animal(), new Dog(), new Husky()};
for (Animal a : arr) {

a.speak();
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Polymorphism

Animal[] arr = {new Animal(), new Dog(), new Husky()};
for (Animal a : arr) {

a.speak();

 DeclaredType x = new ActualType()
- Important:

The Actua lType determines what method is actually called!

CSE 123 Winter 2026
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Declared Type and Actual Type

DeclaredType varName = new ActualType(..);

ActualType must be asubclass of (or same as) DeclaredType

Animal rufus = new Dog("Rufus"); Dog rufus = new Dog(”Rufus");

Declared Type: Animal Declared Type: Dog

Actual Type: Dog Actual Type: Dog

Can call methods that makes sense for EVERY Animal Can call methods that makes sense for EVERY Dog

If Dog overrides a method, uses the Dog version If Dog overrides a method, uses the Dog version



w UNIVERSITY of WASHINGTON LEC 02: Polymorphism; Abstract Classes CSE 123 Winter 2026

Animal[] arr = {new Animal(), new Dog(), new Husky()};
for (Animal a : arr) {

a.speak();

Suppose Animal, Dog, and Husky all implement speak.

Which version gets called on each iteration of the loop?
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Overrldes and MEthOd Ca"S Solution Technique
Animal dubs = new Husky(); .
dubs.speak() ; When running:
Animal Use the most specific version of the method
i call starting from the actual type.
S
Cix
-Iq—JJ © o ”
x| 2 Start from the actual type, then go “up” to
Running: super classes until you find the method. Run
ook this way for speak Dog that first-discovered version.
Use the first :
implementation found "
©
g | o
£l v In this example:
(ORES
If the Husky class overrides speak, then we’ll use the
Actual Type> Husky implementation in Husky. If not, we’ll look in Dog and
use that one if found. If not, then we’ll look in Animal.
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Lecture Outline

* Polymorphism

e Abstract Classes
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Compiler vs. Runtime Errors

* DeclaredType x = new ActualType()
- At compile time, Java only knows DeclaredType
- Compiler error: trying to call a method that isn’t present
Animal a = new Dog();
a.bark(); // No bark() -> CE
- Can cast to change the DeclaredType of an object
Dog d = (Dog) a;
d.bark(); // No more CE
- Runtime error: attempting cast to type that is not a superclass of actual type

Animal a = new Fish();
Dog d = (Dog) a; // Can’t cast -> RE

d.bark();

Order matters! Compilation before runtime
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Compiling Method Calls

Animal rufus = new Dog();

rufus.bark();

Compiling:
Look this way for
bark

Declared Type >

Object

extends
lliS a”

Animal

When compiling:

Can we guarantee that the method exists
for the declared type?

Does the declared type or one of its super
classes contain a method of that name?

If not... Compile Error!

In this example:

When compiling, neither Animal nor Object have a bark
method, so we have a compile error!
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Running Method Calls

Animal rufus = new Dog();

rufus.feed(); When running:
Object Use the most specific version of the method
i call starting from the actual type.
x| Start from the actual type, then go “up” to
Running: super classes until you find the method. Run
Look this way for feed Animal that first-discovered version.
Use the first

implementation found

In this example:

If the Dog class overrides feed, then we’ll use the
Actual Type> Dog Fish implementation in Dog. Otherwise we’ll use the one in
Animal
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Casts and Method Calls

Animal rufus = new Dog();
Dog d = (Dog) rufus;
d.bark(); Can we guarantee that the method exists

Object for the Cast-to type?

When compiling:

Does the Cast-to type or one of its super

Compiling: classes contain a method of that name?
From cast-to type

Look this way

for bark , If not... Compile Error!
Animal .
When Running:
Running:
From actual type o
Look this way Check that the Cast-to Type is either the
for cast-to type Actual Type, or one of its super classes
Cast-to TypeQ
Actual Type/ Dog Al This example has no error




W UNIVERSITY of WASHINGTON LEC 02: Polymorphism; Abstract Classes CSE 123 Winter 2026

Casts and Method Calls

Animal rufus = new Fish();
Dog d = (Dog) rufus;

d.bark(); Can we guarantee that the method exists
Object for the Cast-to type?

When compiling:

Does the Cast-to type or one of its super

Compiling: classes contain a method of that name?
From cast-to type

Look this way

N — | If not... Compile Error!
Animal .
When Running:
Running:
From actual type ..
Look this way Check that the Cast-to Type is either the
for cast-to type Actual Type, or one of its super classes

Cast-to Type>
Dog Fish Actual Type This example has a runtime error
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Compiler vs. Runtime Errors: Method Calls

Method Calls

Does Declared Type have | DeclaredType var = new ActualType() ;

= the method called?
E Ex. var.method ()
E"- No
S

Yes, move onto
Runtime

=k

= Call the Actual Type

= method definition*

o=

* Start at the Actual Type at run time. If it doesn't exist in Actual Type, trace
up the inheritance tree to find the nearest inherited method definition
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Compiler vs. Runtime Errors: Casting

Casting
= Does CastTolype exist?* | peclaredType var = new ActualType () ;
=
%’_ No CastToType newVar = (CastToType) var;
E
© Yes, m0\.fe onto * There are also other reasons why a compiler error can
Runtime occur on a cast, but for CSE 123, we only focus on this case.
= Is Actual Type the same
= or a subtype of the
5 CastTolype?

Yes

Successful Cast!
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; Practice : Think L sido hcsews

[=]

What is the result of the following code?

A. Compiler Error

Teacher socrates = new Teacher("Socrates", 2400);
System.out.println(socrates.getEmployeeName());
System.out.println(socrates.getYearsExperience());

B. Runtime Error

C.No error—runs to
completion
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[m] - [m]
e

sliido #csel23

L) ] . DAl
an Practice : Pair

[a]

What is the result of the following code?

A. Compiler Error

Teacher socrates = new Teacher("Socrates", 2400);
System.out.println(socrates.getEmployeeName());
System.out.println(socrates.getYearsExperience());

B. Runtime Error

C.No error—runs to
completion
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; Practice : Think L sido hcsews

[=]

What is the result of the following code?

A. Compiler Error

Employee anthony = new Chef("Anthony Bourdain");
System.out.println(anthony.getEmployeeName());
anthony.cookFood("shrimp");

B. Runtime Error

C.No error—runs to
completion



w UNIVERSITY of WASHINGTON LEC 02: Polymorphism; Abstract Classes CSE 123 Winter 2026

[m] - [m]
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What is the result of the following code?

A. Compiler Error

Employee anthony = new Chef("Anthony Bourdain");
System.out.println(anthony.getEmployeeName());
anthony.cookFood("shrimp");

B. Runtime Error

C.No error—runs to
completion
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What is the result of the following code?

A. Compiler Error

Employee anthony = new Chef("Anthony Bourdain"); .
System.out.println(anthony.getEmployeeName()); B. Runtime Error

Chef c = (Chef) anthony;
c.cookFood("shrimp"); C. No error—runs to

completion
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)
What is the result of the following code?

A. Compiler Error

Employee anthony = new Chef("Anthony Bourdain"); .
System.out.println(anthony.getEmployeeName()); B. Runtime Error

Chef c = (Chef) anthony;
c.cookFood("shrimp"); C. No error—runs to

completion
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What is the result of the following code?

A. Compiler Error

Employee anthony = new Chef("Anthony Bourdain"); .
System.out.println(anthony.getEmployeeName()); B. Runtime Error

Teacher t = (Teacher) anthony;
t.getYearsExperience(); C. No error—runs to

completion
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What is the result of the following code?

A. Compiler Error

Employee anthony = new Chef("Anthony Bourdain"); .
System.out.println(anthony.getEmployeeName()); B. Runtime Error

Teacher t = (Teacher) anthony;
t.getYearsExperience(); C. No error—runs to

completion
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Lecture Outline
* Polymorphism

* Compiler vs. Runtime Errors
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Abstract Classes

e Mixture of Interfaces and Classes

- Interface similarities:
- Can contain (abstract) method declarations
- Can’t be instantiated

- Class similarities:

- Can contain method implementations
- Can have fields
- Can have constructors

* |s there identical / nearly similar behavior between classes that
shouldn’t inherit from one another?
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Advanced OOP Summary

Abstract
* Allow us to define differing levels of abstraction

- Interfaces = high-level specification Interfaces
- What behavior should this type of class have

- Abstract classes = shared behavior + high-level specification

- Classes = individual behavior implementation Abstract
* Inheritance allows us to share code via “is-a” relationships Classes
- Reduce redundancy / repeated code & enable polymorphism
- Still might not be the “best” decision!
- Interfaces extend other interfaces
- (abstract) classes extend other (abstract) classes

Concrete

* You’re now capable of designing some pretty complex systems!
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Design in the “real world”

* In this course, we’ll always give you expected behavior of the classes
you write
- Often not the case when programming for real
- Clients don’t really know what they want (but programmers don’t either)

* My advice:
- Clarify assumptions before making them (do | really want this functionality?)

- There’s no one right answer
- Weigh the options, make a decision, and provide explanation
- lterative development: make mistakes and learn from them
- Be receptive to feedback and be willing to change your mind
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Interface versus Implementation

* Interface: what something should do
* Implementation: how something is done
* These are different!

* Big theme of CSE 123:

choose between different implementations of same interface
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