Programming Assignment O: Ciphers

Background

Cryptography (not to be confused with cryptocurrency and blockchain) is a branch of Computer
Science and Mathematics concerned with turning input messages (plaintexts) into encrypted ones
(ciphertexts) for the purpose of discreet transfer past adversaries. The most modern and secure of
these protocols are heavily influenced by advanced mathematical concepts and are proven to leak no
information about the plaintext. As the Internet itself consists of sending messages through other
potentially malicious devices to reach an endpoint, this feature is crucial! Without it, much of the
Internet we take for granted would be impossible to implement safely (giving credit card info to
retailers, authenticating senders, secure messaging, etc.) as anyone could gather and misuse anyone
else's private information.

In this assignment, you'll be required to implement a number of classical ciphers making use of your
knowledge of abstract classes and inheritance to reduce redundancy whenever possible. Once
completed, you should be able to encode information past the point of any human being able to
easily determine what the input plaintext was!

n The course staff would like to reinforce a message commonly said by the security and privacy community:
"Never roll your own crypto"”. In other words, do not use this assignment in any future applications where
you'd like to encrypt some confidential user information. Classical ciphers are known to be remarkably old
and weak against the capabilities of modern computation and thus anything encrypted with them should not
be considered secure.

Charactersin Java

In this assignment, a potentially important note is that behind-the-scenes Java assigns each character
an integer value. (e.g. 'A"is 65, 'a'is 97, and so on). This mapping is defined by the ASCII (the American
Standard Code for Information Interchange) standard, and can be seen in the following ASCII table:

Because Java has this inherent mapping, we are able to perform the exact same operations on
characters as we can on integers. This includes addition (e.g. 'A' + 'B' => 131), subtraction (e.g.
'B' - 'A' => 1), and boolean operations (e.g. 'A' < 'B' => true). We can also easily convert
between the integer and character representations by casting (e.g. (int)('A') => 65 or (char)(66)

- lB').

Getting Started

Download starter code:

PO_Ciphers.zip

Breaking It Down

We've crafted a series of sequential development slides, each guiding you through a specific part of
the assignment to eventually build up to our final program. This step-by-step approach is designed to
make the learning process more manageable and less daunting. We recommend taking notes as you
go through each of the slides as well.

Our Recommendation

We strongly recommend using the sequential development slides, especially for this challenging
assignment. It's a step-by-step journey that breaks down the complexity into digestible parts that will
hopefully make it a smoother learning experience! However, you do not have to work in the order
given.

Full Specification

The next slide is the Full Specification detailing the entire spec of the assignment. Each
developmental slide will also provide the relevant sections of the specification to help in completing
the respective slide. We will build up towards the final Ciphers slide, where you will see all your hard
work come together to complete the full assignment!

WARNING: We've noticed that a majority of students' difficulties with this assignment come from not fully
understanding what the spec is asking them to do. Please make sure that you read the description for a
cipher closely before attempting to implement it. If you have any questions about what the spec is
asking, please ask for clarification on Ed!

Full Specification

Learning Objectives

By completing this assignment, students will demonstrate their ability to:

o Define relationships between Java classes using inheritance, abstract classes, and references.

o Write a well-designed Java class that extends a given abstract class,

e Produce clear and effective documentation to improve comprehension and maintainability of
classes,

e Write classes that are readable and maintainable, and that conform to provided guidelines for
style, and implementation

System Structure

We will represent ciphers with the following provided abstract class. You may modify the constants of
this class to help with debugging your implementations (we recommend starting with a smaller set of
valid characters, such ABCDEFG or the example of RSACLVJ — notice that the valid characters do not

have to be consecutive or in order). Expand to see the default Cipher.java file

Vv Expand

NOTE: Remember, you should be making use of the class constants within this class rather than
hardcoding character values within your implementations.

import java.util.*;
import java.io.*;

// Represents a classical cipher that is able to encrypt a plaintext into a ciphertext, and
// decrypt a ciphertext into a plaintext. Also capable of encrypting and decrypting entire files
public abstract class Cipher {
// The valid characters allowed to be encoded or decoded by our Cipher.
// May or may not be in order. May or may not be contiguous.
public static final String VALID_CHARS
= "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqgrstuvwxyz";

// Here are some other VALID_CHARS Strings that you can play around with!
// Uncomment or copy-paste the VALID_CHARS String you want to use, and comment
// the one you don't want to use:

/*
Spec example:

public static final String VALID_CHARS = "RSACLVJ";

A-Z, a-z

public static final String VALID_CHARS
= "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqgrstuvwxyz";

A-G

public static final String VALID_CHARS = "ABCDEFG";

1 1 _ l}l

public static final String VALID_CHARS
= " OIN"#$%&' () *+, -./0123456789: ; <=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]A_"" +
"bacdefghijklmnopqrstuvwxyz{|}";

*/

// Behavior:
//
// Exceptions:
//
// Returns:
// Parameters:

Applies this Cipher's encryption scheme to the file with the

given 'fileName', creating a new file to store the results.

Throws a FileNotFoundException if a file with the provided 'fileName'
doesn't exist

None

'fileName' - The name of the file to be encrypted. Should be non-null.

public void encryptFile(String fileName) throws FileNotFoundException {
fileHelper(fileName, true, "-encrypted");

// Behavior:
//
//
// Exceptions:
//
// Returns:
// Parameters:

Applies the inverse of this Cipher's encryption scheme to the file with the
given 'fileName' (reversing a single round of encryption if previously applies
creating a new file to store the results.

Throws a FileNotFoundException if a file with the provided 'fileName'

doesn't exist

None

'fileName' - The name of the file to be decrypted. Should be non-null.

public void decryptFile(String fileName) throws FileNotFoundException {
fileHelper(fileName, false, "-decrypted");

// Behavior:
//
//
// Exceptions:
//
// Returns:
// Parameters:
//
//
//
//

Reads from an input file with 'fileName', either encrypting or decrypting
depending on 'encrypt', printing the results to a new file with 'suffix'
appended to the input file's name

Throws a FileNotFoundException if a file with the provided 'fileName'
doesn't exist

None

'fileName' - the name of the file to be encrypted / decrypted. Should be
non-null.

'encrypt' - whether or not encryption should occur
'suffix’ - appended to the fileName when creating the output file. Should b
non-null.

private void fileHelper(String fileName, boolean encrypt, String suffix)

Scanner sc
String out

throws FileNotFoundException {
= new Scanner (new File(fileName));
= fileName.split("\\.txt")[0] + suffix + ".txt";

PrintStream ps = new PrintStream(out);
while(sc.hasNextLine()) {

String

line = sc.nextLine();

ps.println(encrypt ? encrypt(line) : decrypt(line));

// Behavior: Returns whether the character is valid.
// Exceptions: None
// Returns: True if this character is valid. False otherwise.
// Parameters: 'character' - The character to check
public static boolean isCharValid(char character) {
return VALID_CHARS.indexOf (character) != -1;

// Behavior: Applies this Cipher's encryption scheme to 'input', returning the result
// Exceptions: Throws an IllegalArgumentException if 'input' is null

// Returns: The result of applying this Cipher's encryption scheme to “input’
// Parameters: 'input' - the string to be encrypted. Should be non-null and all characters o
// '"input' should contain only valid characters.

public abstract String encrypt(String input);

// Behavior: Applies this inverse of this Cipher's encryption scheme to 'input' (reversing
// a single round of encryption if previously applied), returning the result

// Exceptions: Throws an IllegalArgumentException if 'input' is null

// Returns: The result of applying the inverse of this Cipher's encryption scheme to “inp
// Parameters: 'input' - the string to be encrypted. Should be non-null and all characters o
// "input' should contain only valid characters.

public abstract String decrypt(String input);

Required Operations

You must implement the following encryption schemes in this assignment. You should not create
any additional classes beyond the ones listed. Note that the following descriptions often refer to
the "valid characters," which is defined by the Cipher.VALID_CHARS constant within Cipher.java.

HINT: Check out the "Swap: Example Ciphers" slide for an example implementation of a Cipher!

Substitution.java

The Substitution Cipher is likely the most commonly known encryption algorithm. It consists of
assigning each input character a unique output character, ideally one that differs from the original,
and replacing all characters from the input with the output equivalent when encrypting (and vice-
versa when decrypting).

In our implementation, this mapping between input and output will be provided via a encoding
string. The encoding will represent the output characters corresponding to the input character at the
same relative position within the set of valid characters (defined by Cipher.VALID_CHARS). To picture
this, we can vertically align this encoding string with the valid characters and look at the
corresponding columns to see the appropriate character mappings.

Here is an example:

VALDCHARS:
encrypt: §
decrypt: 4
Encoding: IE

Plaintexts Ciphertexts

[RIVI[LFJ]VI[S]

In this example, our valid characters are the letters "RSACLV]". In code, we represent this as all of the
characters in Cipher.VALID_CHARS . We line this up with our given encoding String, which in this

case is "JLCASVR", such that "RSACLV]" is directly on top of "JLCASVR". This means that the letter R will
be encrypted to the letter J, the letter S encrypts to the letter L, the letter A encrypts to the letter
C, the letter C¢ encrypts to the letter A, the letter L encrypts to the letter S, the letter v encrypts to
the letter v, and the letter J encrypts to the letter R.

To decrypt, we would go in the opposite direction. Therefore, the letter 3 would be decrypted to the
letter R, the letter L decrypts to the letter s, the letter ¢ decrypts to the letter A, the letter A
decrypts to the letter C, the letter S decrypts to the letter L, the letter v decrypts to the letter v,
and the letter R decrypts to the letter J.

Given the encoding string above, the plaintext "RAS" would be encrypted into "JCK" and the ciphertext
"JVS" decrypts into the plaintext "RVL".

HINT: Notice what really matters here is the position of each character in the set of valid characters, and the
character at the corresponding location in the encoding String. What are some useful methods or concepts
that can help you map from one character to another?

Required Behavior:

Substitution should extend the provided Cipher.java OR a subclass of Cipher.java and contain
the following constructors / additional instance method:

public Substitution()

e Constructs a new Substitution Cipher with an empty encoding.

public Substitution(String encoding)

e Constructs a new Substitution Cipher with the provided encoding.

e Should throw an IllegalArgumentException if the given encoding meets any of the following
cases:

Is null

The length of the encoding doesn't match the number of valid characters in our Cipher

Contains a duplicate character

Any individual character is not a valid character (i.e., is not in Cipher.VALID_CHARS).

= Consider isCharvalid()!

(e}

o

(o]

(e}

public void setEncoding(String encoding)

e Updates the encoding for this Substitution Cipher.
e Should throw an IllegalArgumentException if the given encoding meets any of the following
cases:
o Is null
The length of the encoding doesn't match the number of valid characters in our Cipher
Contains a duplicate character
Any individual character is not a valid character (i.e., is not in Cipher.VALID_CHARS).

= Consider isCharvalid()!

o

(o]

o

Since we're allowing clients to set an encoding after construction (via the no-argument constructor
and the setEncoding method), encrypt / decrypt should throw an IllegalStateException if

the encoding was never set:

Substitution a = new Substition();

a.encrypt("RSA"); // Should throw an IllegalStateException since the encoding was never set!
CaesarShift.java

This encryption scheme draws inspiration from the Substitution Cipher, except it involves shifting all
valid characters to the left by some provided shift amount.

Applying the CaesarShift Cipher is defined as replacing each input character with the corresponding
character in encoding at the same relative position. This encoding should be created by moving all
characters within the range to the left shift times, moving the value at the front to the end each

time.

Similarly, inversing the CaesarShift Cipher is defined as replacing each input character with the
corresponding character in the set of valid characters at the same relative position within encoding.

This encoding should be created by moving all characters within the range to the left shift times,
moving the value at the front to the end each time.

For example, if the shiftis 1 and our valid characters are "QMTAZKP", Q would be replaced with M.
Additionally, for characters that would shift past the end of the set of valid characters (P in this case),

the replacement character can be found by looping back around to the front of the valid characters.
In this example, P would map to Q. If the shift was 3 and our valid characters are "QMTAZKP", then

Q would mapto A, M would map to z, and so on, with Z, K, and P wrapping around to map to Q,
M, and T respectively.

Consider the following diagram for a visual explanation:

Shift: +1

VALID_CHARS:
(For shifter creation)

Plaintexts Ciphertexts

[T]KI[PI—~Al[P][Q]

In this example, our valid characters are the letters "QMTAZKP". To create the encoding, we move the
character at the front of the set of valid characters to the end (and in doing so, shift all other
characters to the left). As the shift value above is just one, this process is repeated one time. If the
shift value was two, we'd do it twice.

With a shift value of 1, our encoding String becomes "MTAZKPQ". Notice how the first letter, Q, was

moved from the front to the back. Similarly to Substitution, the mapping of letters is made clearer
by placing "QMTAZKP" on top of "MTAZKPQ", such that Q is encryptedto M, M isencryptedto T, T
isencryptedto A, A isencryptedto z, z is encrypted to K, K isencryptedto P, and P is
encrypted to Q. We go the opposite direction for decryption, so M is decrypted to Q, T is decrypted
to M, A isdecryptedto T, z is decryptedto A, K isdecryptedto z, P is decryptedto K, and Q is
decrypted to P.

HINT: What data structure would help with this process of removing from the front and adding to the back?

HINT: Notice that after creating the encoding String, encrypting and decrypting a given input behaves exactly
the same as Substitution!Keepingin mind our recently learned concepts, what can we say about the
relationship between cCaesarshift and Substitution? How can we take advantage of those similarities to
reduce redundancy between these two classes?

After creating the encoding string, the process of encrypting / decrypting should exactly match that of
the Substitution cipher (replace each character of the input with the character at the same relative
position in the encoding string for encrypting, or vice-versa for decrypting).

Required Behavior:

CaesarShift should extend the provided Cipher.java OR a subclass of Cipher.java and contain the
following constructor:

public CaesarShift(int shift)

e Constructs a new CaesarShift with the provided shift value
e An IllegalArgumentException should be thrown in the case that shift < 0

CaesarKey.java

The CaesarKey scheme builds off of the base Substitution Cipher. This one involves placing a key at
the front of the substitution, with the rest of the valid characters following normally (minus the
characters included in the key). This means that the first character in our valid characters would be
replaced by the first character within the key. The second character in the valid characters would be
replaced by the second character within the key. This process would repeat until there are no more
key characters, in which case the replacing value would instead be the next unused character within
the valid characters.

Consider the following diagram for a visual explanation:

VALID_CHARS:

CIlUJLE]JLF]IR

encrypt: |

decrypt: 4

coans [F A CIEINUIR
Key: FACE

sz [AJ[N][CI[UI[E][F

(For shifter creation)

Plaintexts Ciphertexts

To build the encoding String, notice that we took the key and placed it in the beginning. Then, we go
through the characters in our valid characters and add them if they are not already in the encoding
string. In the following example, note that the encoding string starts with "FACE" (the key) and then is
followed by the valid characters in their original order, excluding characters 'F', 'A’, 'C', and 'E' as
they're already in the encoding. This results in the encoding String "FACENUR".

After creating the encoding string, the process of encrypting and decrypting should exactly match that
of the Substitution cipher. We see that A is encrypted to F, N is encrypted to A, C is encrypted to

C, U isencryptedto E, E isencryptedto N, F isencryptedto U, and R is encryptedto R . We
invert this process to decrypt so that F decryptsto A, A decryptsto B, C decryptsto C, E
decryptsto U, N decryptsto E, U decryptsto F,and R decryptsto R.

HINT: Notice that after creating the encoding String, encrypting and decrypting a given input behaves exactly
the same as Substitution!Keepingin mind our recently learned concepts, what can we say about the
relationship between the caesarKey and substitution ciphers? How can we take advantage of those
similarities to reduce redundancy between these two classes?

At this point, we recommend taking a closer look at the provided example if you haven't done so
already!

Required Behavior

CaesarKey should extend the provided Cipher.java OR a subclass of Cipher.java and contain the

following constructor:

public CaesarKey(String key)

e Constructs a new CaesarKey with the provided key value
e This constructor should throw an IllegalArgumentException if the given key meets any of

the following cases:
o Isnull
o Contains a duplicate character
o Any individual character is not a valid character (i.e., is not in Cipher.VALID_CHARS).

= Consider ischarvalid()!

WARNING: We are requiring that you do not override encrypt / decrypt methods within Caesarkey . These
should be inherited from a superclass.

MultiCipher.java

The above ciphers are interesting, but on their own, they're pretty solvable. A more complicated
approach would be to chain these ciphers together to confuse any possible adversaries! This can be
accomplished by passing the original input through a list of ciphers one at a time, using the previous
cipher's output as the input to the next. Repeating this through the entire list results in the final
encrypted string. Decrypting would then involve the opposite of this: starting with the last cipher and
working backward through the cipher list until the plaintext is revealed.

Below is a diagram of these processes, passing inputs through each layer of the cipher list. Consider
the following diagram demonstrating the process of encrypting/decrypting a MultiCipher consisting
of 3 internal ciphers: a CaesarShift of 4, a CaesarKey with key "BAG", and a CaesarShift of 8.

n NOTE: In this example, the valid characters are ABCDEFG

Plaintexts: CABBAGE GAGGED

SwapCipher(‘A’, ‘B’) Sl

CBAABGE GBGGED

encrypt: § ” 9 Cipher
decrypt:4 CaesarKey(“BAG”) 1

GABBAFD FAFFDC

CaesarShift(4) .

Ciphertexts: --cce-p CECCAG

On the left in the above example, we start with the plaintext: CABBAGE hoping to encrypt it.

Encrypting this through the first layer (a SwapCipher with arguments 'A' and 'B') results in the
intermediary encrypted message CBAABGE . This intermediary value is then used as input to the next

layer (a CaesarKey with key "BAG"), resulting in the second intermediary encrypted message
GABBAFD . This process is repeated one last time, resulting in the final ciphertext of DEFFECA.

On the right in the above example, we start at the ciphertext: CECCAG hoping to decrypt it. Decrypting

this through the last layer (a CaesarShift of 4) results in the intermediary still-encrypted message
FAFFDC . This intermediary value is then used as input to the next layer (a CaesarKey with key "BAG"),

resulting in the second intermediary still-encrypted message GBGGED . This process is repeated one
last time, resulting in the final plaintext of GAGGED .

This is what you'll be implementing in this class: given a list of ciphers, apply them in order to encrypt
or in reverse order to decrypt a given message.

n NOTE: Unlike in caesarKey,you may override encrypt and decrypt if you think it is necessary.

Required Behavior:

MultiCipher should extend the provided Cipher.java OR a subclass of Cipher.java and contain
the following constructor:

public MultiCipher(List<Cipher> ciphers)

e Constructs a new MultiCipher with the provided List of Ciphers
o You may assume that any Cipher in the list is non-null, and calling encrypt / decrypt will

not throw an IllegalStateException.
e Should throw an IllegalArgumentException if the given listis null

Use Your Ciphers!

Now that you're done, set

Cipher.VALID_CHARS = " I\"#$%&'()*+, -./0123456789: ; <=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]A_"" +
"bacdefghijklmnopqrstuvwxyz{|}"

Then, using the Client class, create a MultiCipher consisting of the following: a Caesarshift(4), a
CaesarKey("123"), a CaesarShift(12), and a Caesarkey("lemon") . Decrypt the following!

Yysu(zer(vyly xylw("m(!xy (g ywl}ul!)(Oyt(&e"({le$($xq!(!xy (}u qgwu($q (ruvenu(tusn&m!ylwd(E1

Once you've figured it out, revert Cipher.VALID CHARS to
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz" for the testing portion of the
assignment

Testing

You are welcome to use the provided Client.java to test and debug your cipher implementations.
To do so, make sure to change the CHOSEN_CIPHER constant to the cipher you're testing before hitting
run. You are also encouraged to modify the constants in Cipher.java such that a smaller subset of
characters are used by your cipher.

You'll be required to finish the 3 unimplemented tests in Testing.java: one for CaesarKey, one for
CaesarsShift, and one for MulticCipher . Follow the steps outlined in the comments within each
method for more guidance.

WARNING: We've provided you a test that checks if your Testing.java file compiles and no tests fail. It does
not check that the appropriate updates were made according to the comments within the file. It is your
responsibility to make sure that you're updating the file correctly.

Implementation Guidelines

As always, your code should follow all guidelines in the Code Quality Guide and Commenting Guide.
In particular, pay attention to these requirements and hints:

e Each type of Cipher should be represented by a class that extends the Cipher class (or a
subclass of cipher). You should not modify cipher . You should utilize inheritance to
capture common behavior among similar cipher types and eliminate as much redundancy
between classes as possible.

e You should not create any additional classes beyond the ones listed.

e In general, you should not need many (if any) modifications to your superclass to implement a
subclass. Your subclass should be built off of your superclass, not the other way around.

e You should avoid unnecessary reprocessing in your code when possible. For example, rather
than recomputing a result whenever it is needed, write your code in such a way that you
compute the result only once, and save the result to use later.

e You should make all of your fields private and you should reduce the number of fields only to
those that are necessary for solving the problem.

e Each of your fields should be initialized inside of your constructor(s).

e You should comment your code following the Commenting Guide. You should write comments
with basic info (a header comment at the top of your file), a class comment for every class, and
a comment for every method other than main.

o Make sure to avoid including implementation details in your comments. In particular, for
your object class, a client should be able to understand how to use your object effectively
by only reading your class and method comments, but your comments should maintain
abstraction by avoiding implementation details.

[NOT GRADED] Swap: Example Ciphers

Sample implementations with annotations for MultiSwapCipher and SwapCipher have been
provided so you can see how certain implementation choices might be made. You do not need to
implement these ciphers.

MultiSwapCipher

This encryption scheme takes in a list of characters with which to "swap" while encrypting. For a
better idea of what this looks like, imagine the following list of swaps ['A', 'B', 'C'].When

encrypting, this means we would swap all As to Bs, Bs to Cs, and Cs to As in our ciphertext. When
decrypting, we would do the reverse: As become Cs, Cs become Bs, and Bs become As such that we
end up with the same plaintext.

Required Behavior

MultiSwapCipher should extend the provided Cipher.java OR a subclass of Cipher.java and
contain the following constructor / additional instance method:

public MultiSwapCipher()

e Constructs a MultiSwapCipher with no set swaps

public MultiSwapCipher(List<Character> swaps)

o Constructs a MultiSwapCipher using the provided list to determine which characters to swap
with one another.
e An IllegalArgumentException should be thrown in the following cases:

o There are < 2 elements within the list (as no encryption would occur)
o Any of the characters in the list is invalid.

public void setSwaps(List<Character> swaps)

e Updates the swap list for this MultiSwapCipher
e An IllegalArgumentException should be thrown in the following cases:

o There are < 2 elements within the list (as no encryption would occur)
o Any of the characters in the list is invalid.

Since we're allowing clients to set swaps after construction (via the no-argument constructor and the
setSwaps method), encrypt / decrypt should throw an IllegalStateException if the swaps

were never set:

Cipher a = new MultiSwapCipher();
a.encrypt("BAD"); // Should throw an IllegalStateException since the swaps were never set!

SwapCipher

This encryption is a simplified version of the one described above where we only ever swap two
characters. For a better idea of what this looks like, imagine the following swaps 'A' and 'B' When

encrypting, this means we would swap all As to Bs and Bs to As in our ciphertext. When decrypting,
we would do the reverse: Bs become As and As become Bs such that we end up with the same
plaintext.

HINT: Note that this process would exactly match that of MultiSwapCipher given a list with two characters!
Keeping in mind our recently learned concepts, what can we say about the relations between
SwapCipher and MultiSwapCipher ? How can we take advantage of those similarities to reduce redundancy
between these two classes?

Required Behavior

SwapCipher should extend the provided Cipher.java OR a subclass of Cipher.java and contain
the following constructor:

public SwapCipher(char a, char b)

o Constructs a new SwapCipher with the provided characters to swap
e An IllegalArgumentException should be thrown in the case that either of the characters is

invalid.

Test It

To test this Cipher and any others, you may run the provided Client.java file. If you wanted to test
one of the swap ciphers, you could change the CHOSEN_CIPHER on line 6 to be a MultiSwapCipher /
SwapCipher object with appropriate swaps. For example, in the following line, our chosen cipher is
the MultiSwapCipher cipher with swaps of [A, B, C].

public static final Cipher CHOSEN_CIPHER = new MultiSwapCipher(List.of('A', 'B',
'C'));

Then, you can hit run and try your own inputs! You can also write JUnit tests within the provided
Testing.java file.

[NOT GRADED] Substitution

All required files can be found on the Getting Started slide

WARNING: This slide is NOT graded

Slide Overview

Welcome to the first step, where you will be implementing one of the required files,
Substitution.java !

Note that the following descriptions often refer to the "valid characters," which is defined by the
Cipher.VALID_CHARS constant within Cipher.java.

Substitution.java

The Substitution Cipher is likely the most commonly known encryption algorithm. It consists of
assigning each input character a unique output character, ideally one that differs from the original,
and replacing all characters from the input with the output equivalent when encrypting (and vice-
versa when decrypting).

In our implementation, this mapping between input and output will be provided via a encoding
string. The encoding will represent the output characters corresponding to the input character at the
same relative position within the set of valid characters (defined by Cipher.VALID_CHARS). To picture
this, we can vertically align this encoding string with the valid characters and look at the
corresponding columns to see the appropriate character mappings.

Here is an example:

VALDCHARS:
encrypt: |
decrypt: 4
Encoding: IE

Plaintexts Ciphertexts

[RIAISI—{J][C][L]
RIVI[L}{J]VIS]

In this example, our valid characters are the letters "RSACLV]". In code, we represent this as all of the
characters in Cipher.VALID_CHARS . We line this up with our given encoding String, which in this
case is "JLCASVR", such that "RSACLV]" is directly on top of "JLCASVR". This means that the letter R will
be encrypted to the letter J, the letter S encrypts to the letter L, the letter A encrypts to the letter
C, the letter ¢ encrypts to the letter A, the letter L encrypts to the letter S, the letter v encrypts to
the letter v, and the letter J encrypts to the letter R.

To decrypt, we would go in the opposite direction. Therefore, the letter J would be decrypted to the
letter R, the letter L decrypts to the letter s, the letter ¢ decrypts to the letter A, the letter A
decrypts to the letter c, the letter S decrypts to the letter L, the letter v decrypts to the letter v,
and the letter R decrypts to the letter J.

Given the encoding string above, the plaintext "RAS" would be encrypted into "JCK" and the ciphertext
"JVS" decrypts into the plaintext "RVL".

HINT: Notice what really matters here is the position of each character in the set of valid characters, and the
character at the corresponding location in the encoding String. What are some useful methods or concepts
that can help you map from one character to another?

Required Behavior:

Substitution should extend the provided Cipher.java OR a subclass of Cipher.java and contain

the following constructors / additional instance method:

public Substitution()

e Constructs a new Substitution Cipher with an empty encoding.

public Substitution(String encoding)

e Constructs a new Substitution Cipher with the provided encoding.

e Should throw an IllegalArgumentException if the given encoding meets any of the following
cases:

Is null

The length of the encoding doesn't match the number of valid characters in our Cipher

Contains a duplicate character

Any individual character is not a valid character (i.e., is not in Cipher.VALID_CHARS).

= Consider isCharvalid()!

o

o

o

(e}

public void setEncoding(String encoding)

e Updates the encoding for this Substitution Cipher.
e Should throw an IllegalArgumentException if the given encoding meets any of the following
cases:
o Is null
The length of the encoding doesn't match the number of valid characters in our Cipher
Contains a duplicate character
Any individual character is not a valid character (i.e., is not in Cipher.VALID_CHARS).

= Consider isCharvalid()!

o

o

o

Since we're allowing clients to set an encoding after construction (via the no-argument constructor
and the setEncoding method), encrypt / decrypt should throw an IllegalStateException if

the encoding was never set:

Substitution a = new Substition();
a.encrypt("RSA"); // Should throw an IllegalStateException since the encoding was never set!

Once you've successfully passed the tests for this slide:

Download your Substitution.java file and upload it to the next slide, CaesarShift.java. Note

that this slide is not graded. However, we recommend that you do not move on to the rest of the
program until you have passed all tests in this slide.

[NOT GRADED] CaesarShift

All required files can be found on the Getting Started slide
WARNING: This slide is NOT graded
Welcome to the next step! Here is where all the inheritance you've been learning over the past week

comes into play. As you read through this specification, take note of the behavioral similarities
between Substitution.java and CaesarShift.java

CaesarShift.java

This encryption scheme draws inspiration from the Substitution Cipher, except it involves shifting all
valid characters to the left by some provided shift amount.

Applying the CaesarShift Cipher is defined as replacing each input character with the corresponding
character in encoding at the same relative position. This encoding should be created by moving all

characters within the range to the left shift times, moving the value at the front to the end each
time.

Similarly, inversing the CaesarShift Cipher is defined as replacing each input character with the
corresponding character in the set of valid characters at the same relative position within encoding.

This encoding should be created by moving all characters within the range to the left shift times,
moving the value at the front to the end each time.

For example, if the shiftis 1 and our valid characters are "QMTAZKP", Q would be replaced with M.
Additionally, for characters that would shift past the end of the set of valid characters (P in this case),

the replacement character can be found by looping back around to the front of the valid characters.
In this example, P would map to Q. If the shift was 3 and our valid characters are "QMTAZKP", then

Q would mapto A, M would map to z, and so on, with Z, K, and P wrapping around to map to Q,
M, and T respectively.

Consider the following diagram for a visual explanation:

Shift: +1

VALID_CHARS:
(For shifter creation)

Plaintexts Ciphertexts

[T]K][PI—Al[P][Q]

In this example, our valid characters are the letters "QMTAZKP". To create the encoding, we move the
character at the front of the set of valid characters to the end (and in doing so, shift all other
characters to the left). As the shift value above is just one, this process is repeated one time. If the
shift value was two, we'd do it twice.

With a shift value of 1, our encoding String becomes "MTAZKPQ". Notice how the first letter, Q, was
moved from the front to the back. Similarly to Substitution, the mapping of letters is made clearer
by placing "QMTAZKP" on top of "MTAZKPQ", such that Q is encryptedto M, M isencryptedto T, T
isencryptedto A, A isencryptedto z, z is encrypted to K, K isencryptedto P, and P is
encrypted to Q. We go the opposite direction for decryption, so M is decrypted to Q, T is decrypted
to M, A isdecryptedto T, z is decryptedto A, K isdecryptedto z, P isdecryptedto K, and Q is
decrypted to P.

HINT: What data structure would help with this process of removing from the front and adding to the back?

HINT: Notice that after creating the encoding String, encrypting and decrypting a given input behaves exactly
the same as Substitution!Keepingin mind our recently learned concepts, what can we say about the
relationship between Caesarshift and Substitution? How can we take advantage of those similarities to
reduce redundancy between these two classes?

After creating the encoding string, the process of encrypting / decrypting should exactly match that of
the Substitution cipher (replace each character of the input with the character at the same relative
position in the encoding string for encrypting, or vice-versa for decrypting).

Required Behavior:

CaesarShift should extend the provided Cipher.java OR a subclass of Cipher.java and contain the
following constructor:

public CaesarsShift(int shift)

e Constructs a new CaesarShift with the provided shift value
e An IllegalArgumentException should be thrown in the case that shift < 0

Once you've successfully passed the tests for this slide:

Download your Substitution.java and CaesarShift.java files and upload them to the next slide,

CaesarKey.java. Note that this slide is not graded. However, we recommend that you do not
move on to the rest of the program until you have passed all tests in this slide.

[NOT GRADED] CaesarKey

All required files can be found on the Getting Started slide

WARNING: This slide is NOT graded

Slide Overview

As you read through this specification, take note of the behavioral similarities between
Substitution.java and CaesarKey.java

CaesarKey.java

The CaesarKey scheme builds off of the base Substitution Cipher. This one involves placing a key at
the front of the substitution, with the rest of the valid characters following normally (minus the
characters included in the key). This means that the first character in our valid characters would be
replaced by the first character within the key. The second character in the valid characters would be
replaced by the second character within the key. This process would repeat until there are no more
key characters, in which case the replacing value would instead be the next unused character within
the valid characters.

Consider the following diagram for a visual explanation:

VALID_CHARS:

CIlUJLE]JLF]IR

encrypt: |

decrypt: 4

coans [F A CIEINUIR
Key: FACE

sz [AJ[N][CI[UI[E][F

(For shifter creation)

Plaintexts Ciphertexts

To build the encoding String, notice that we took the key and placed it in the beginning. Then, we go
through the characters in our valid characters and add them if they are not already in the encoding
string. In the following example, note that the encoding string starts with "FACE" (the key) and then is
followed by the valid characters in their original order, excluding characters 'F', 'A’, 'C', and 'E' as
they're already in the encoding. This results in the encoding String "FACENUR".

After creating the encoding string, the process of encrypting and decrypting should exactly match that
of the Substitution cipher. We see that A is encrypted to F, N is encrypted to A, C is encrypted to

C, U isencryptedto E, E isencryptedto N, F isencryptedto U, and R is encryptedto R . We
invert this process to decrypt so that F decryptsto A, A decryptsto B, C decryptsto C, E
decryptsto U, N decryptsto E, U decryptsto F,and R decryptsto R.

HINT: Notice that after creating the encoding String, encrypting and decrypting a given input behaves exactly
the same as Substitution!Keepingin mind our recently learned concepts, what can we say about the
relationship between the caesarKey and substitution ciphers? How can we take advantage of those
similarities to reduce redundancy between these two classes?

At this point, we recommend taking a closer look at the provided example if you haven't done so
already!

Required Behavior

CaesarKey should extend the provided Cipher.java OR a subclass of Cipher.java and contain the
following constructor:

public CaesarKey(String key)

e Constructs a new CaesarKey with the provided key value
e This constructor should throw an IllegalArgumentException if the given key meets any of
the following cases:
o Isnull
o Contains a duplicate character
o Any individual character is not a valid character (i.e., is notin Cipher.VALID_CHARS).

= Consider iscCharvalid()!

WARNING: We are requiring that you do not override encrypt / decrypt methods within Caesarkey . These
should be inherited from a superclass.

Once you've successfully passed the tests for this slide:

Download your Substitution.java , CaesarShift.java, and CaesarKey.java files and upload
them to the next slide, MultiCipher.java. Note that this slide is not graded. However, we
recommend that you do not move on to the rest of the program until you have passed all tests in this
slide.

[NOT GRADED] MultiCipher

All required files can be found on the Getting Started slide

WARNING: This slide is NOT graded

MultiCipher.java

The above ciphers are interesting, but on their own, they're pretty solvable. A more complicated
approach would be to chain these ciphers together to confuse any possible adversaries! This can be
accomplished by passing the original input through a list of ciphers one at a time, using the previous
cipher's output as the input to the next. Repeating this through the entire list results in the final
encrypted string. Decrypting would then involve the opposite of this: starting with the last cipher and
working backward through the cipher list until the plaintext is revealed.

Below is a diagram of these processes, passing inputs through each layer of the cipher list. Consider
the following diagram demonstrating the process of encrypting/decrypting a MultiCipher consisting
of 3 internal ciphers: a CaesarShift of 4, a CaesarKey with key "BAG", and a CaesarShift of 8.

n NOTE: In this example, the valid characters are ABCDEFG

Plaintexts: CABBAGE GAGGED

SwapCipher(‘A’, ‘B’) Sl

CBAABGE GBGGED

encrypt: § ” 9 Cipher
decrypt:4 CaesarKey(“BAG”) 1

GABBAFD FAFFDC

CaesarShift(4) .

Ciphertexts: --cce-p CECCAG

On the left in the above example, we start with the plaintext: CABBAGE hoping to encrypt it.

Encrypting this through the first layer (a SwapCipher with arguments 'A' and 'B') results in the
intermediary encrypted message CBAABGE . This intermediary value is then used as input to the next

layer (a CaesarKey with key "BAG"), resulting in the second intermediary encrypted message
GABBAFD . This process is repeated one last time, resulting in the final ciphertext of DEFFECA.

On the right in the above example, we start at the ciphertext: CECCAG hoping to decrypt it. Decrypting

this through the last layer (a CaesarShift of 4) results in the intermediary still-encrypted message
FAFFDC . This intermediary value is then used as input to the next layer (a CaesarKey with key "BAG"),

resulting in the second intermediary still-encrypted message GBGGED . This process is repeated one
last time, resulting in the final plaintext of GAGGED .

This is what you'll be implementing in this class: given a list of ciphers, apply them in order to encrypt
or in reverse order to decrypt a given message.

n NOTE: Unlike in caesarKey,you may override encrypt and decrypt ifyou think it is necessary.

Required Behavior:

MultiCipher should extend the provided Cipher.java OR a subclass of Cipher.java and contain

the following constructor:

public MultiCipher(List<Cipher> ciphers)

e Constructs a new MultiCipher with the provided List of Ciphers
o You may assume that any Cipher in the list is non-null, and calling encrypt / decrypt will
not throw an IllegalStateException.
e Should throw an IllegalArgumentException if the given listis null

Once you've successfully passed the tests for this slide:

Download your Substitution.java, CaesarKey.java, Caesarshift.java, and MultiCipher.java
files and upload them to the next slide, Ciphers . Note that thisslide is not graded. However,
we recommend that you do not move on to the rest of the program until you have passed all tests in
this slide.

» [GRADED] Ciphers

All required files can be found on the Getting Started slide
WARNING: This slide IS graded

Write/Upload your implementations to Substitution.java, CaesarShift.java, CaesarKey.java,
and MultiCipher.java herel Remember that implementations for all of these are required for this
assignment.

Use Your Ciphers!

Now that you're done, set

Cipher.VALID_CHARS = " I\"#$%&'()*+, -./0123456789: ; <=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]A_ " +
"bacdefghijklmnopqrstuvwxyz{|}"

Then, using the Client class, create a MultiCipher consisting of the following: a Caesarshift(4), a
CaesarKey("123"), a CaesarShift(12), and a CaesarKey("lemon") . Decrypt the following!

Yysu(zer(vyly xylw("m(!xy (g ywl}ul!)(Oyt(&e"({le$($xq!(!xy (}u qgwu($q (ruvenu(tusn&m!ylwJ(E1

Once you've figured it out, revert Cipher.VALID CHARS to
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz" for the testing portion of the
assignment

Testing

You are welcome to use the provided Client.java to test and debug your cipher implementations.
To do so, make sure to change the CHOSEN_CIPHER constant to the cipher you're testing before hitting
run. You are also encouraged to modify the constants in Cipher.java such that a smaller subset of
characters are used by your cipher.

You'll be required to finish the 3 unimplemented tests in Testing.java: one for CaesarKey, one for
Caesarshift, and one for MulticCipher . Follow the steps outlined in the comments within each
method for more guidance.

WARNING: We've provided you a test that checks if your Testing.java file compiles and no tests fail. It does
not check that the appropriate updates were made according to the comments within the file. It is your
responsibility to make sure that you're updating the file correctly.

Implementation Guidelines

As always, your code should follow all guidelines in the Code Quality Guide and Commenting Guide.
In particular, pay attention to these requirements and hints:

e Each type of Cipher should be represented by a class that extends the cipher class (or a
subclass of cipher). You should not modify Cipher . You should utilize inheritance to
capture common behavior among similar cipher types and eliminate as much redundancy
between classes as possible.

e You should not create any additional classes beyond the ones listed.

e In general, you should not need many (if any) modifications to your superclass to implement a
subclass. Your subclass should be built off of your superclass, not the other way around.

e You should avoid unnecessary reprocessing in your code when possible. For example, rather
than recomputing a result whenever it is needed, write your code in such a way that you
compute the result only once, and save the result to use later.

e You should make all of your fields private and you should reduce the number of fields only to
those that are necessary for solving the problem.

e Each of your fields should be initialized inside of your constructor(s).

e You should comment your code following the Commenting Guide. You should write comments
with basic info (a header comment at the top of your file), a class comment for every class, and
a comment for every method other than main.

o Make sure to avoid including implementation details in your comments. In particular, for
your object class, a client should be able to understand how to use your object effectively
by only reading your class and method comments, but your comments should maintain
abstraction by avoiding implementation details.

Reflection

For this week’s reflection, we would like everyone to watch and engage with the following video.

Step 1: Watch End To End Encryption (E2EE) - Computerphile (8m 12s)

An error occurred.

Unable to execute JavaScript.

(https://youtu.be/jkV1KEJGKRA)

Question 1

Step 2: The next 3 questions will require you reflect on privacy, encryption and a few ethical
complications.

In 2015, there was a rather infamous court case resulting from the US government mandating Apple
extract encrypted data from criminals' devices. These included devices Apple had no ability to crack
with their current tooling; thus, Apple was ordered to develop new software that would enable this
decryption to occur.

The most well-known example involved unlocking the phone of a terrorist involved in a shooting that
killed 14 and injured 22. The government hoped that unlocking the phone would prevent future
terrorist attacks. With this context, do you believe this to be a fair request? Why or why not?

For full credit, you should provide a stance, as well as explain your reasoning.

Question 2

Now, apply what was mentioned in the video - that there's no such thing as a safe backdoor - to this
situation. Alternatively stated, should Apple create cracking software (and prove its existence) it's
possible a non-government entity could obtain and misuse it.

Does this perspective change your answer to the previous question and why? How would you feel if
software capable of decrypting any and all private information on your devices existed?

For full credit, you should answer both questions and provide reasoning.

Question 3
Having answered the above questions, do you believe it's necessary to sacrifice privacy for the

"greater good" / safety of modern society? Why or why not?

For full credit, you should provide a stance, as well as explain your reasoning.

Question 4

Step 3: The following questions will ask that you practice metacognition to reflect on the topics
covered on this assignment and your experience completing it. For each question, focus on your plan
and/or process for working through the assignment along with the CS concepts. Think about things
like how you organized your working time, what sorts of things tended to go wrong, and how you
dealt with those errors or mistakes.

Describe the inheritance hierarchy you chose to create. Which classes extended which other classes?
Why did you make those choices?

Question 5

Describe how you went about testing your implementation. What specific situations and/or test cases
did you consider? Why were those cases important?

Question 6

What skills did you learn and/or practice with working on this assignment?

Question 7

What did you struggle with most on this assignment?

Question 8

What questions do you still have about the concepts and skills you used in this assignment?

Question 9

About how long (in hours) did you spend on this assignment? (Feel free to estimate, but try to be
close.)

Question 10

Was any part of the specification or requirements unclear? If so, which part(s), how was it unclear,
and how could it have been made more clear?

Question 11

[OPTIONAL] Do you have any other feedback, questions, or comments about this assignment?

(Note that we may not be able to respond to questions here, so please post on the message board if
you would like a response!)

Final Submission

Final Submission

Fill out the box below and click "Submit" in the upper-right corner of the window to submit your
work.

Question

| attest that the work | am about to submit is my own and was completed according to the course
Academic Honesty and Collaboration policy. If | collaborated with any other students or utilized any
outside resources, they are allowed and have been properly cited. If | have any concerns about this
policy, | will reach out to the course staff to discuss before submitting.

(Type "yes" as your response.)

