Creative Project 0: Search Engine

Full Specification

This assignment is intended to be a review and warm-up for CSE 123. It will require you to use the skills and
concepts that you should be familiar with from your prior programming experience. It will also serve as an
introduction to your first IDE, Visual Studio Code. This is designed to help everyone review and practice the
programming skills that will be necessary to succeed in CSE 123. While we don't necessarily expect everyone to
find this assignment easy, if you find yourself having major difficulties with any of the content, please contact
the course staff to get support!

Learning Objectives

By completing this assignment, students will demonstrate their ability to:

e Write functionally correct Java programs that meet a provided specification using compound
data types

o Write functionally correct Java classes to represent new, compound data types

e Identify errors in a Java program'’s state or behavior, and implement fixes for identified errors

e Use the Visual Studio debugger to go through a program line by line

Background

Search engines are powerful tools used to help users find information relevant to their needs among
very large sets of documents (most often the World Wide Web). While web-based search engines date
back to at least the early 1990s, they become more widely used in the mid-90s as both the size and
usage of the Web increased. In 1998, Google launched it's search engine based on the PageRank
algorithm and almost immediately became the dominant engine, a status which it maintains to this
day, with almost 90% of all web searches taking place on Google.

While search engines are generally very large and complex systems, at their core, they rely on two
key operations: indexing, which makes the vast amounts of data being searched easier and more
efficient to work with; and ranking, which tries to identify which results are most relevant to the user.
Users interact with a search engine by entering a query, or a sequence of words or tokens that
represent what they are looking for (such as best coffee near me or wireless headphones or
British adventure novels). The query is used to identify relevant documents in the index, which
are then presented to the user in order of rank.

In this assignment, you will implement simple versions of the indexing, ranking, and query
operations to build a basic search engine for media (books, movies, etc.).

Assignment Structure

For this assignment, we have broken down the larger problem of building the search engine into a
series of smaller problems, each presented on its own coding slide. Apart from the debugging
activity, we recommend you proceed through each slide in sequence, then combine the results you
produce together in the "Search Engine" slide. However, you are also welcome to complete all your
work in the Debugging and Search Engine slides themselves. Regardless of which approach you take,
be sure to upload all of your code to the Debugging and Search Engine slide, as only work on those
slides will be graded.

Debugging

One of the many benefits of working out of an IDE like VSCode is the ability to enhance your
debugging experience. It's important that you are able to take an active role in verifying how your
code works and if the output is what you expect. Beyond tests, to support you in this process, we've
included a short activity on the Debugging slide designed to help you get comfortable using VSCode
and its debugger.

The Book Class

First, we'll need to implement a way to represent the media we'll be searching. We've provided you
with an interface called Media that can be used to represent many different types of media (movies,

songs, books, etc.). You will write a Java class called Book that implements the provided
Media interface and represents a book. For books, the artists are considered to be the author(s).

Here is the provided Media interface for reference:

Expand

Constructors

Your class should have one constructor:

public Book(String title, List<String> authors, Scanner content)

o Creates a book with the provided title, list of author(s), and content in the given Scanner .

The title and author(s) should not be able to be modified by a client after creation. The Scanner

parameter to the constructor should be used to access the content of the book, which is what should
be returned by the getContent method of the Media interface. You should treat each token you

read from the Scanner as a single piece of content. (Most likely, this will be the actual words in the
book, but you do not need to assume that — just read the tokens from the Scanner .)

toString

In addition to the methods required by the interface, your Book class should include a toString()
method to produce a readable string representation. If the book has zero ratings, the string
representation should be:

<title> by [<authors>]

If the book has at least one review, the string representation should be:

<title> by [<authors>]: <average rating> (<num ratings> ratings)

The average rating should be rounded to at most two decimal places in the string representation only.
(The getAverageRating method should return the actual average without rounding.)

Comparable<Book>

Finally, your Book class should implement the Comparable<Book> interface, and you should

implement a comparison algorithm of your choice. Your comparison must make use of at least
one method or field of the Book class, but can otherwise work in any way you see fit. You may
wish to keep in mind that we will ultimately be creating a search engine, so comparing media in a
way that the ones most likely to be relevant to a search appear first might be useful, but this is not
required (and would be challenging without knowing the search terms).

Addtionally, your compareTo method must be able to return all three possible values (i.e.
negative, zero, or positive) and should be consistent (i.e. if a.compareTo(b) is negative, then
b.compareTo(a) should be positive and vice versa).

Inverted Index

Next, we will to create an index for our search engine to use. In particular, we will use an approach
called an inverted index that maps content to locations where that content can be found. In this case,
we will map the content obtained from the getContent method of the Media interface to each

Media object that contains that content.

Write a method in the SearchClient class called createIndex that creates an inverted index for a
list of documents. Your method should take one parameter, a list of Media objects. Your method
should return a map where the keys are individual tokens that appear within each of the Media
objects (as returned by the getContent method) and the values are sets of Media objects in which
those tokens appear.

Suppose we have a list of Media objects docs that, when printed out, produce the output:

docs = [Up by [Pete Docter], Spirited Away by [Hayao Miyazaki], Interstellar by [Christopher Nolan]

and where each element contained the following tokens:

docs.get(0).getContent()
docs.get(1).getContent()
docs.get(2).getContent()

[I, am, going, to, Paradise, Falls, if, it, kills, me]
[Once, you, do, something, you, never, forget]
[It, was, never, meant, to, die, here]

In this case, an inverted index would return the following map:

{am=[Up by [Pete Docter]], die=[Interstellar by [Christopher Nolan]], do=[Spirited Away by [Hayao M
falls=[Up by [Pete Docter]], forget=[Spirited Away by [Hayao Miyazaki]], going=[Up by [Pete Docter
here=[Interstellar by [Christopher Nolan]], i=[Up by [Pete Docter]], if=[Up by [Pete Docter]],
it=[Up by [Pete Docter], Interstellar by [Christopher Nolan]], kills=[Up by [Pete Docter]],
me=[Up by [Pete Docter]], meant=[Interstellar by [Christopher Nolan]],
never=[Spirited Away by [Hayao Miyazaki], Interstellar by [Christopher Nolan]],
once=[Spirited Away by [Hayao Miyazaki]], paradise=[Up by [Pete Docter]],
something=[Spirited Away by [Hayao Miyazaki]], to=[Up by [Pete Docter], Interstellar by [Christoph
was=[Interstellar by [Christopher Nolan]], you=[Spirited Away by [Hayao Miyazaki]]}

The method should be case-insensitive (ex: treat "It" and "it" as the same word). This should be
done by normalizing the keys to be lowercase.

The keys of the returned map should be in sorted order (TreeMap), while the sets in the
values should prefer fast lookup speed (HashSet).

Creative Extension: Search Queries

Finally, we'll put the pieces together into our simplified search engine by implementing a way to get
only the documents that are relevant to a user's search.

To earn an E on this assignment, you must implement the following inside the SearchClient class:

Search

For your creative extension, write a method in the SearchClient class called search that takes two
parameters: an index in the format created by your createIndex method and a String representing

the query for the search. Your method should return a set consisting of the media in the index that
are relevant to the search query based on any criteria of your choice. Your search criteria must
make use of the index and query somehow, but beyond that, the specific approach is up to you.
The set returned from the search method should be a TreeSet to make use of the ordering based

on the implementation of the Comparable interface in the media classes (e.g., your Book class).

NOTE: Your method should not always return an empty set; it must produce results for at least some queries
if the index is non-empty.

To give a potential starting point, consider docs from earlier:

docs = [Up by [Pete Docter], Spirited Away by [Hayao Miyazaki], Interstellar by [Christopher Nolan]

and its inverted index:

{am=[Up by [Pete Docter]], die=[Interstellar by [Christopher Nolan]], do=[Spirited Away by [Hayao M
falls=[Up by [Pete Docter]], forget=[Spirited Away by [Hayao Miyazaki]], going=[Up by [Pete Docter
here=[Interstellar by [Christopher Nolan]], i=[Up by [Pete Docter]], if=[Up by [Pete Docter]],
it=[Up by [Pete Docter], Interstellar by [Christopher Nolan]], kills=[Up by [Pete Docter]],
me=[Up by [Pete Docter]], meant=[Interstellar by [Christopher Nolan]],
never=[Spirited Away by [Hayao Miyazaki], Interstellar by [Christopher Nolan]],
once=[Spirited Away by [Hayao Miyazaki]], paradise=[Up by [Pete Docter]],
something=[Spirited Away by [Hayao Miyazaki]], to=[Up by [Pete Docter], Interstellar by [Christoph
was=[Interstellar by [Christopher Nolan]], you=[Spirited Away by [Hayao Miyazaki]]}

Which documents would you expect to see if the query was Hayao Miyazaki or Interstellar or
Never falls? What would you want to see? The choice is yours!

Testing Requirements

We have provided an incomplete Testing.java file that you should update lines according to the
guiding comments within. You should only have to change 12 lines of code within this file so that it
compiles and accurately tests your implementations. Look for the comments that start with Tobo: to
find where you should make changes.

WARNING: We've provided you a test that checks if your Testing.java file compiles and no tests fail. It does
not check that the appropriate updates were made according to the comments within the file. It is your
responsibility to make sure that you're updating the file correctly.

n NOTE: Testing will never count towards code quality or commenting grades

We recommend reading over this file to better understand how to write JUnit tests. As the quarter
progresses, we will be providing you with less testing guidance, so if you have any questions or
confusion, it's best to ask them now!

Implementation Guidelines

As always, your code should follow all guidelines in the Code Quality Guide and Commenting Guide.
In particular, pay attention to these requirements and hints:

e You should avoid re-implementing the functionality of already existing methods by just calling
those existing methods.

e You should make all of your fields private, and you should reduce the number of fields to only
those that are necessary for solving the problem.

e Each of your fields should be initialized inside of your constructor(s).

e You should comment your code following the Commenting Guide. You should write comments
with basic info (a header comment at the top of your file), a class comment for every class, and
a comment for every method other than main.

o Make sure to avoid including implementation details in your comments. In particular, for
your object class, a client should be able to understand how to use your object effectively
by only reading your class and method comments, but your comments should maintain
abstraction by avoiding implementation details.

» Any additional helper methods created, but not specified in the spec, should be declared
private.

Feeling Stuck?

While we expect this assighment to be review, it's still OK if you find this assignment a bit challenging!
Remember that learning is a challenging process, and you don't have to do it alonel!

e You can visit the Introductory Programming Lab (IPL) to talk with a TA about programming
concepts or get help on assignments.

e You can stop by instructor office hours to discuss course concepts or get help on assignments,
or discuss the course in general.

e You can post questions on the discussion board! You can make questions public (anyone can
see them) or private (only course staff can see them). This is a great way to asynchronously get
help on an assignment or ask questions about the course.

It is OK to get stuck and feel challenged by this assignment. However, note that this is intended to be
a warm-up for the type of programming we will be doing for the rest of the quarter, and the tasks we
will be solving in future weeks will be more complex than these problems and rely on a solid grasp of
the skills practiced in this assignment. If you feel like you cannot do this assignment at all, we
recommend reaching out to the course instructor (brettwo@cs.washington.edu) or the CSE undergrad
advisors (ugrad-adviser@cs.washington.edu) to discuss more about academic planning and which
programming course might be a good fit for your goals.

Submission

When you are ready to submit, go to the" Final Submission " slide, read the statement, and fill in
the box, then click "Submit" in the upper-right corner. You may submit as many times as you want
until the due date.

You can see your previous submissions by clicking the three dots icon in the upper-right and selecting
"Submissions and Grades." By default, we will grade your latest submission from before the deadline.
However, if you would like us to grade a different submission, you can select that submission on the
left side of the window and click "Set final." Note that we will not grade any submission made after
the deadline-- if you mark a submission after the deadline as final, we will grade your most-recent
on-time submission instead.

Please make sure you are familiar with the resources and policies outlined in the syllabus and the
assignments page.

Opening Code in VSCode

The general process we're expecting you to follow when working on and submitting HW assignments
is slightly different from previous courses now that you have an IDE (VSCode)! You should

Download the provided .zip file
Finditin Finder / File Explorer

Unzip it to get the folder with relevant files.
In VSCode, click File > Open Folder, and select the recently unzipped folder to open it!

Hwn o=

This process is outlined in the following .gif (mac shown, but the process would be the same for
windows with File Explorer)

o Chwoms Fis Ddn View Histety Bockearks Profier s Winses Heip

I W]

Coding Workspace ehpas o ke nitiar At Atbempt

= |WPBATED] Pregramming Assignm, . o Delription

Coding Workspace

Dowmond STIFTEF COfe:

Cadng Workigace

encourags you instead dewnbaad the abeve e such
r wia WErose (or ancther IDE of your
use an actual debugger and let you

et COnmeclion

o - P locally on WO Cormy

iy, ol shosdd B reuploading your

jawa Tk ba Ed 0 that you ¢an 16t tham with the Test

Erumtien b thee Bonoim eighi befone sulbmitting

Collections/Reference Semantics - Debugging
[pobugging.java]

b Lopand
Collections - Inverted Index [InvertedIndex. java]
* Expand

Classes/Interfaces - Media [Book. java and
Hedia, java]

¥ Expand

 rs s o tar s commeai e mcosTHOR T Ao | far

Then, once you've finished, you should re-upload your code by copy-pasting or drag-dropping the
files back into Ed! At this point you can run tests via the Test button.

OO R O Wed e IF B PU

[WPDATED] Programming Assignm Description

* Coding Workspace

DoAY STIFTEF CORE

Semantics - Debugging
[ebugging-java |

Collections - Inverted Index
[InvertedIndes.java]
» Exgand

T
. Classes/interfaces - Media b

Spec Walkthrough

An error occurred.

Unable to execute JavaScript.

[GRADED] Debugging

This slide IS graded.

One of the many benefits of working out of an IDE like VSCode is the ability to enhance your
debugging experience. It's important that you are able to take an active role in verifying how your
code works and if the output is what you expect. Beyond tests, to support you in this process, we've
included a short activity on the Debugging slide designed to help you get comfortable using VSCode
and its debugger.

Hopefully, you've had a chance to complete the Software Setup for this course. If not, no worries—
you'll want to finish that first before moving on with this slide.

Once you have set up the Visual Studio "IDE" (integrated development environment - an application
that helps you code), download and open the file below. You will have to determine the correct code
needed to unlock the query by using the debugger.

Download starter code:

CO_Debugging.zip

n NOTE: You should only need to update line 30 ofthe provided file: unlock("00000"); to the defusal code
you determine using the VSCode debugger!

WARNING: We're trying our best to encourage you to use the VSCode debugger here, so you may find that
printlns don't actually print anything! This is expected behavior :)

This Debugger Guide (linked on the website) will help guide you through the process!

After you've used the VS Code Debugger to crack the code, you should upload your completed
QueryCracker.java file to Ed so that you can test with the Test button in the bottom right before
submitting.

[NOT GRADED] Media

This slide is NOT graded.

Download starter code:
CO_Media.zip

This is the first of two slides where you will implement the beginning parts of your assignment.
However, you might notice that this workspace is empty! Rather than coding directly in Ed, we highly
encourage you to instead download the above file such that you can program locally on your
computer via VScode (or another IDE of your choice). Doing so will allow you to use an actual
debugger and will let you work on assignments without internet connection!

Note that after working locally, you should be reuploading your completed .java files to Ed so that
you can test them with the Test button in the bottom right before submitting.

Book

First, we'll need to implement a way to represent the media we'll be searching. We've provided you
with an interface called Media that can be used to represent many different types of media (movies,

songs, books, etc.). You will write a Java class called Book that implements the provided
Media interface and represents a book. For books, the artists are considered to be the author(s).

Here is the provided Media interface for reference:

Expand

Constructors

Your class should have one constructor:

public Book(String title, List<String> authors, Scanner content)

o Creates a book with the provided title, list of author(s), and content in the given Scanner .

The title and author(s) should not be able to be modified by a client after creation. The Scanner

parameter to the constructor should be used to access the content of the book, which is what should
be returned by the getContent method of the Media interface. You should treat each token you

read from the Scanner as a single piece of content. (Most likely, this will be the actual words in the
book, but you do not need to assume that — just read the tokens from the Scanner .)

toString

In addition to the methods required by the interface, your Book class should include a toString()
method to produce a readable string representation. If the book has zero ratings, the string
representation should be:

<title> by [<authors>]

If the book has at least one review, the string representation should be:

<title> by [<authors>]: <average rating> (<num ratings> ratings)

The average rating should be rounded to at most two decimal places in the string representation only.
(The getAverageRating method should return the actual average without rounding.)

Comparable<Book>

Finally, your Book class should implement the Comparable<Book> interface, and you should

implement a comparison algorithm of your choice. Your comparison must make use of at least
one method or field of the Book class, but can otherwise work in any way you see fit. You may

wish to keep in mind that we will ultimately be creating a search engine, so comparing media in a
way that the ones most likely to be relevant to a search appear first might be useful, but this is not
required (and would be challenging without knowing the search terms).

Addtionally, your compareTo method must be able to return all three possible values (i.e.
negative, zero, or positive) and should be consistent (i.e. if a.compareTo(b) is negative, then
b.compareTo(a) should be positive and vice versa).

[NOT GRADED] Inverted Index

This slide is NOT graded.

Download starter code:
CO_Invertedindex.zip

To get started, download the zip file above, and paste in your implementation of Book.java from the
previous slide.

Similarly to the previous slide, rather than coding directly in Ed, we highly encourage you to instead
download the above file such that you can program locally on your computer via VScode (or another
IDE of your choice). Doing so will allow you to use an actual debugger and will let you work on
assignments without internet connection!

Note that after working locally, you should be reuploading your completed .java files to Ed so that
you can test them with the Test button in the bottom right before submitting.

NOTE: The tests for your createIndex implementation are tied to a working Book implementation. This
means that you should be passing all Book tests before moving on to implementing createIndex !

WARNING: We've noticed that sometimes VSCode will automatically include an import for
javax.print.attribute.standard.Media; . Please delete this if you notice it present within your
InvertedIndex.java file!

Inverted Index

Next, we will to create an index for our search engine to use. In particular, we will use an approach
called an inverted index that maps content to locations where that content can be found. In this case,
we will map the content obtained from the getContent method of the Media interface to each
Media object that contains that content.

Write a method in the InvertedIndex class called createIndex (note: this will eventually go in the
SearchClient.java file in the graded slide) that creates an inverted index for a list of documents.
Your method should take one parameter, a list of Media objects. Your method should return a map
where the keys are individual tokens that appear within each of the Media objects (as returned by
the getContent method) and the values are sets of Media objects in which those tokens appear.

Suppose we have a list of Media objects docs that, when printed out, produce the output:

docs = [Up by [Pete Docter], Spirited Away by [Hayao Miyazaki], Interstellar by [Christopher Nolan]

and where each element contained the following tokens:

docs.get(0).getContent()
docs.get(1).getContent()
docs.get(2).getContent()

[I, am, going, to, Paradise, Falls, if, it, kills, me]
[Once, you, do, something, you, never, forget]
[It, was, never, meant, to, die, here]

In this case, an inverted index would return the following map:

{am=[Up by [Pete Docter]], die=[Interstellar by [Christopher Nolan]], do=[Spirited Away by [Hayao M
falls=[Up by [Pete Docter]], forget=[Spirited Away by [Hayao Miyazaki]], going=[Up by [Pete Docter
here=[Interstellar by [Christopher Nolan]], i=[Up by [Pete Docter]], if=[Up by [Pete Docter]],
it=[Up by [Pete Docter], Interstellar by [Christopher Nolan]], kills=[Up by [Pete Docter]],
me=[Up by [Pete Docter]], meant=[Interstellar by [Christopher Nolan]],
never=[Spirited Away by [Hayao Miyazaki], Interstellar by [Christopher Nolan]],
once=[Spirited Away by [Hayao Miyazaki]], paradise=[Up by [Pete Docter]],
something=[Spirited Away by [Hayao Miyazaki]], to=[Up by [Pete Docter], Interstellar by [Christoph
was=[Interstellar by [Christopher Nolan]], you=[Spirited Away by [Hayao Miyazaki]]}

The method should be case-insensitive (ex: treat "It" and "it" as the same word). This should be
done by normalizing the keys to be lowercase.

The keys of the returned map should be in sorted order (TreeMap), while the sets in the
values should prefer fast lookup speed (HashsSet).

[GRADED] Search Engine

This slide IS GRADED.

Download starter code:
CO_SearchEngine.zip

You might notice that this workspace is empty! Rather than coding directly in Ed, we highly encourage
you to instead download the above file such that you can program locally on your computer via
VScode (or another IDE of your choice). Doing so will allow you to use an actual debugger and will let
you work on assignments without an internet connection!

Note that after working locally, you should reupload your completed . java files to Ed so that you
can test them with the Test button in the bottom right before submitting.

WARNING: We've noticed that sometimes VSCode will automatically include an import for
javax.print.attribute.standard.Media; . Please delete this if you notice it present within your
SearchClient.java file!

n NOTE: You don't need to worry about reuploading the books directory as it's already included in the scaffold!

Creative Extension: Search Queries

Finally, we'll put the pieces together into our simplified search engine by implementing a way to get
only the documents that are relevant to a user's search.

Most of the work has been done for you here, but you'll have to integrate your implementations from
the helper slides. This will involve 3 main steps:

1. Paste your implementation of Book within Book.java
2. Paste your implementation of createIndex @ line 44

Then, fill in the method in the SearchClient class called search (located at line 48) that takes two
parameters: an index in the format created by your createIndex method and a String representing
the query for the search.

NOTE: the line numbers might change after pasting in your createIndex implementation, but is marked with
a "TODO" comment so you can search for within the file

Your method should return a set consisting of the media in the index that are relevant to the search
query based on any criteria of your choice. Your search criteria must make use of the index and

query somehow, but beyond that, the specific approach is up to you. The set returned from the
search method should be a TreeSet to make use of the ordering based on the implementation of
the comparable interface in the media classes (e.g., your Book class).

NOTE: Your method should not always return an empty set; it must produce results for at least some queries
if the index is non-empty.

To give a potential starting point, consider docs from earlier:

docs = [Up by [Pete Docter], Spirited Away by [Hayao Miyazaki], Interstellar by [Christopher Nolan]

and its inverted index:

{am=[Up by [Pete Docter]], die=[Interstellar by [Christopher Nolan]], do=[Spirited Away by [Hayao M
falls=[Up by [Pete Docter]], forget=[Spirited Away by [Hayao Miyazaki]], going=[Up by [Pete Docter

here=[Interstellar by [Christopher Nolan]], i=[Up by [Pete Docter]], if=[Up by [Pete Docter]],
it=[Up by [Pete Docter], Interstellar by [Christopher Nolan]], kills=[Up by [Pete Docter]],
me=[Up by [Pete Docter]], meant=[Interstellar by [Christopher Nolan]],

never=[Spirited Away by [Hayao Miyazaki], Interstellar by [Christopher Nolan]],

once=[Spirited Away by [Hayao Miyazaki]], paradise=[Up by [Pete Docter]],

something=[Spirited Away by [Hayao Miyazaki]], to=[Up by [Pete Docter], Interstellar by [Christoph
was=[Interstellar by [Christopher Nolan]], you=[Spirited Away by [Hayao Miyazaki]]}

Which documents would you expect to see if the query was Hayao Miyazaki or Interstellar or
Never falls?What would you want to see? The choice is yours!

Testing Requirements

We have provided an incomplete Testing.java file that you should update lines according to the

guiding comments within. You should only have to change 12 lines of code within this file so that it
compiles and accurately tests your implementations.

WARNING: We've provided you a test that checks if your Testing.java file compiles and no tests fail. It does
not check that the appropriate updates were made according to the comments within the file. It is your
responsibility to make sure that you're updating the file correctly.

n NOTE: Testing will never count towards code quality or commenting grades

We recommend reading over this file to better understand how to write JUnit tests. As the quarter
progresses, we will be providing you with less testing guidance, so if you have any questions or
confusion, it's best to ask them now!

You can hit check (not Test) to see a descriptive output of running your tests in Testing.java.

Reflection

For this week’s reflection, we would like everyone to watch and engage with the following video.

Step 1: Watch The moral bias behind your search results | Andreas Ekstrom (9m 19s)

An error occurred.

Unable to execute JavaScript.

Question 1

Step 2: Write your own comment below, responding to one of the following prompts in its entirety:

Prompt 1: At Google, who's responsibility do you think it is to come up with moral rules and
judgements surrounding search engine ranking results as described in the video? (Executives,
managers, software engineers, other). Do you think that they should have that power / responsibility
and why? If not, who do you think should have this responsibility?

Prompt 2: Do you think search engine providers (Google, Bing, etc.) have an obligation to remind
their users that "unbiased, clean search results" can't truly exist as mentioned within the video? Why?
If you do think so, are they currently acting on that obligation? Why might that be the case?

Prompt 3: How do you feel about the video's claim that software reflects the biases of the
programmer? Do you agree / disagree? Why? Give an example of a biased program / application in
your day-to-day life.

Please label which prompt you are answering. For full credit, all questions within a prompt
must be clearly answered. In particular, we suggest using the ACE (answer, cite, and explain)
format. For a meaningful response, it may be helpful to pose some counterexamples, connect in
terms of your own experience, add additional support from course materials, and be as specific as
possible in your own reasoning

Question 2

Step 3: The following questions will ask that you practice metacognition to reflect on the topics
covered on this assignment and your experience completing it. For each question, focus on your plan
and/or process for working through the assignment along with the CS concepts. Think about things
like how you organized your working time, what sorts of things tended to go wrong, and how you

dealt with those errors or mistakes.

What skills did you learn and/or practice with working on this assignment?

Question 3

What did you struggle with most on this assignment?

Question 4

What questions do you still have about the concepts and skills you used in this assignment?

Question 5

About how long (in hours) did you spend on this assignment? (Feel free to estimate, but try to be
close.)

Question 6

Was any part of the specification or requirements unclear? If so, which part(s), how was it unclear,
and how could it have been made more clear?

Question 7

[OPTIONAL] Do you have any other feedback, questions, or comments about this assignment?

(Note that we may not be able to respond to questions here, so please post on the message board if
you would like a responsel)

Final Submission

Final Submission

Fill out the box below and click "Submit" in the upper-right corner of the window to submit your
work.

Question

| attest that the work | am about to submit is my own and was completed according to the course
Academic Honesty and Collaboration policy. If | collaborated with any other students or utilized any
outside resources, they are allowed and have been properly cited. If | have any concerns about this
policy, | will reach out to the course staff to discuss before submitting.

(Type "yes" as your response.)

