BEFORE WE START

Talk to your neighbors:

What are your spring break plans?

Instructors: Brett Wortzman Miya Natsuhara

TAs:	Arohan	Neha	Rushil	Johnathan	Nicholas
	Sean	Hayden	Srihari	Benoit	Isayiah
	Audrey	Chris	Andras	Jessica	Kavya
	Cynthia	Shreya	Kieran	Rohan	Eeshani
	Amy	Packard	Cora	Dixon	Nichole
	Trien	Lawrence	Liza	Helena	
Music: CSE 123 25wi Lecture Tunes					

LEC 09

CSE 123

Recursive Programming

Questions during Class?

Raise hand or send here

sli.do #cse123

Announcements

- Resubmission Period 2 due tonight (2/7) at 11:59pm
 - Last opportunity for CO
- Quiz 1 Tuesday (2/11) in your registered section
- Programming Assignment 1 is due Wednesday (2/12) at 11:59pm
- Resubmission Period 3 opening tonight, due next Friday (2/14 💌)
 - Assignments available: P0, C1

CSE 123 Autumn 2024

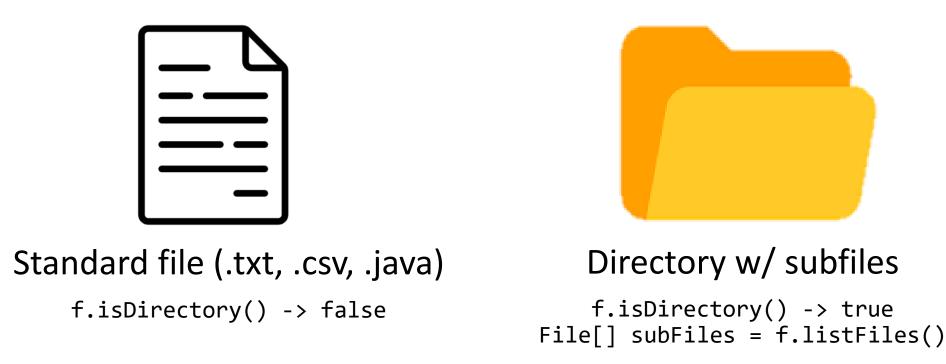
Recursive Methods [Review]

- 2 components of every recursive method:
- Recursive case
 - Decompose problem into subproblem
 - Make the actual recursive call
 - Combine results meaningfully
- Base case
 - Simplest version of the problem
 - No subproblems to break into
 - Return known answer

If decomposing moves you closer to the base, no infinite recursion!

Why Recursion?

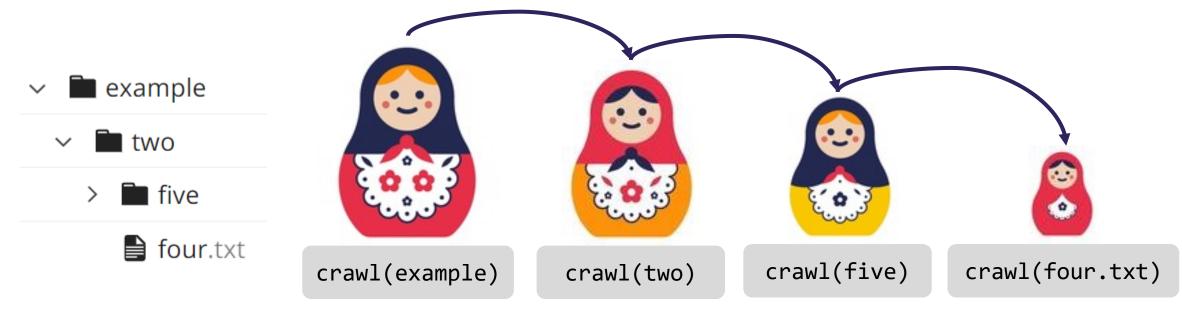
- Generally, anything you can write iteratively you can write recursively
 - So why write anything recursively?


Recursion is particularly useful when dealing with something that's recursively defined

- Math examples:
 - Factorial: n! = n * (n 1)!
 - Exponent: $x^n = x * x^{n-1}$
 - Fibonacci: fib(n) = fib(n 1) + fib(n 2)

- Non-math examples?
 - ListNodes (int data, ListNode next)
 - Other ideas?

Files


• We'll say that computer files fall into one of the following categories:

This is a recursive definition! A File is either normal, or a directory with a File[] of subFiles

Crawl w/ Indentation

• How can one of our files know what level it's on?

- What if a bigger doll told the next smaller doll the level?
 - So long as the first doll is told the right value, this will work!
- Remember, recursive method calls are still method calls
 - How can we pass information from a bigger doll to a smaller doll?

Public / Private Pairs

- Used when we need additional information between recursive calls
- Private helper method hides additional info
 - Clients shouldn't have to worry about it
- All public method does is kick-start the private one
 - What's the correct starting value(s) for additional param(s)?

Question to ask: "Do I need to keep track of any additional information?"