
CSE 123 Winter 2025LEC 02: Abstract Classes

CSE 123
L E C 0 2

Questions during Class?

Raise hand or send here

sli.do #cse123

Abstract Classes

Talk to your neighbors:
Coffee or tea? Or something else?

BEFORE WE START

Instructors: Brett Wortzman
Miya Natsuhara

Arohan Neha Rushil Johnathan Nicholas

Sean Hayden Srihari Benoit Isayiah

Audrey Chris Andras Jessica Kavya

Cynthia Shreya Kieran Rohan Eeshani

Amy Packard Cora Dixon Nichole

Trien Lawrence Liza Helena

Music: CSE 123 25wi Lecture Tunes

https://open.spotify.com/playlist/2ycEEh9Cc2llxbeC96sUlv?si=AjcBAsNlTEyTp8WWvb48-Q

CSE 123 Winter 2025LEC 02: Abstract Classes

Announcements

• Review sessions held on Monday Jan 13
- Recordings are linked from the course calendar

• Creative Project 0 due tonight, Wed Jan 15 at 11:59pm!
- See generic Creative Project rubric posted on website

• Programming Assignment 0 will be released tomorrow, Thurs Jan 16
- Focused on inheritance and abstract classes

• NOTE: Monday, Jan 20 is a university holiday (MLK Jr. day) so campus
will be closed

- Instructor office hours will be cancelled

- IPL will be closed

- Message board will still be available, but response time may vary

https://courses.cs.washington.edu/courses/cse123/25wi/rubrics/

CSE 123 Winter 2025LEC 02: Abstract Classes

Lecture Outline

• Polymorphism Review

- Declared vs. Actual Type

- Compiler vs. Runtime Errors

• Abstract Classes Review

• Pre/Post conditions and commenting

CSE 123 Winter 2025LEC 02: Abstract Classes

Review: Is-a Relationships

Animal

Mammal

Dog Cat

Fish Birds Reptile Amphibian

CSE 123 Winter 2025LEC 02: Abstract Classes

Review: Polymorphism
• DeclaredType x = new ActualType()

- All methods in DeclaredType can be called on x

- We’ve seen this with interfaces (List<String> vs. ArrayList<String>)

- Can also be to inheritance relationships

Animal[] arr = {new Dog(), new Cat(), new Bear()};

for (Animal a : arr) {

a.feed();

}

CSE 123 Winter 2025LEC 02: Abstract Classes

Compiler vs. Runtime Errors
• DeclaredType x = new ActualType()

- At compile time, Java only knows DeclaredType

- Compiler error (CE): trying to call a method that isn’t present

Animal a = new Dog();

a.bark(); // No bark() -> CE

- Can cast to change the DeclaredType of an object

((Dog) a).bark(); // No more CE

- Runtime error (RE): attempting to cast to an invalid DeclaredType*

Animal a = new Fish();

((Dog) a).bark(); // Can’t cast -> RE

- Order matters! Compilation before runtime

CSE 123 Winter 2025LEC 02: Abstract Classes

Compiler vs. Runtime Errors

CSE 123 Winter 2025LEC 02: Abstract Classes

sli.do #cse122Practice : Think

What results from the following code being
executed? (1)

Animal gumball = new Dog();
gumball.bark();

A.Compiler Error

B.Runtime Error

C.Compiles and runs without error

CSE 123 Winter 2025LEC 02: Abstract Classes

sli.do #cse122Practice : Pair

What results from the following code being
executed? (1)

Animal gumball = new Dog();
gumball.bark();

A.Compiler Error

B.Runtime Error

C.Compiles and runs without error

CSE 123 Winter 2025LEC 02: Abstract Classes

sli.do #cse122Practice : Think

What results from the following code being
executed? (2)

Animal gumball = new Dog();
((Dog) gumball).bark();

A.Compiler Error

B.Runtime Error

C.Compiles and runs without error

CSE 123 Winter 2025LEC 02: Abstract Classes

sli.do #cse122Practice : Pair

What results from the following code being
executed? (2)

Animal gumball = new Dog();
((Dog) gumball).bark();

A.Compiler Error

B.Runtime Error

C.Compiles and runs without error

CSE 123 Winter 2025LEC 02: Abstract Classes

sli.do #cse122Practice : Think

What results from the following code being
executed? (3)

Animal gumball = new Dog();
((String) gumball).meow();

A.Compiler Error

B.Runtime Error

C.Compiles and runs without error

CSE 123 Winter 2025LEC 02: Abstract Classes

sli.do #cse122Practice : Pair

What results from the following code being
executed? (3)

Animal gumball = new Dog();
((String) gumball).meow();

A.Compiler Error

B.Runtime Error

C.Compiles and runs without error

CSE 123 Winter 2025LEC 02: Abstract Classes

sli.do #cse122Practice : Think

What results from the following code being
executed? (4)

Animal gumball = new Dog();
((Reptile) gumball).slither();

A.Compiler Error

B.Runtime Error

C.Compiles and runs without error

CSE 123 Winter 2025LEC 02: Abstract Classes

sli.do #cse122Practice : Pair

What results from the following code being
executed? (4)

Animal gumball = new Dog();
((Reptile) gumball).slither();

A.Compiler Error

B.Runtime Error

C.Compiles and runs without error

CSE 123 Winter 2025LEC 02: Abstract Classes

Lecture Outline

• Polymorphism Review

- Declared vs. Actual Type

- Compiler vs. Runtime Errors

• Abstract Classes Review

• Pre/Post conditions and commenting

CSE 123 Winter 2025LEC 02: Abstract Classes

Abstract Classes

• Mixture of Interfaces and Classes
- Interface similarities:

- Can contain (abstract) method declarations

- Can’t be instantiated

- Class similarities:
- Can contain method implementations

- Can have fields

• Is there identical / nearly similar behavior between classes that
shouldn’t inherit from one another?

Interfaces

Abstract
Classes

Classes

CSE 123 Winter 2025LEC 02: Abstract Classes

Shape / Square / Circle Example
The starter code contains Shape, Square, and Circle classes similar to the pre-class work, as well as a

Client that prints out a couple of shapes.

• Add an abstract getName method to the Shape.

- Add implementations of getName to Square and Circle that return "Square" and "Circle".

• Add a method isEmpty to Shape that tells you whether the shape is empty (has zero area) or not.

- Hint: you will need to call getArea, but it may not immediately work…

• Implementing isEmpty by calling getArea works fine as is, but suppose we wanted to implement it

in Circle directly. How could we do this just by looking at the fields of the Circle? Implement it this

way by overriding isEmpty in Circle.

• Override toString in Shape to return a similar message to what the Client prints in the starter

code:

- Hint: your toString can call abstract methods!

• Rewrite the Client class to use the new toString on shapes.

CSE 123 Winter 2025LEC 02: Abstract Classes

Advanced OOP Summary

• Allow us to define differing levels of abstraction
- Interfaces = high-level specification

- What behavior should this type of class have

- Abstract classes = shared behavior + high-level specification

- Classes = individual behavior implementation

• Inheritance allows us to share code via “is-a” relationships
- Reduce redundancy / repeated code & enable polymorphism

- Still might not be the “best” decision!

- Interfaces extend other interfaces

- (abstract) classes extend other (abstract) classes

Interfaces

Abstract
Classes

Classes

Abstract

Concrete

• You’re now capable of designing some pretty complex systems!

CSE 123 Winter 2025LEC 02: Abstract Classes

Design in the “real world”

• In this course, we’ll always give you expected behavior of the classes
you write

- Often not the case when programming for real

- Clients don’t really know what they want (but programmers don’t either)

• My advice:
- Clarify assumptions before making them (do I really want this functionality?)

- There’s no one right answer
- Weigh the options, make a decision, and provide explanation

- Iterative development: make mistakes and learn from them

- Be receptive to feedback and be willing to change your mind

CSE 123 Winter 2025LEC 02: Abstract Classes

Interface versus Implementation

• Interface: what something should do

• Implementation: how something is done

• These are different!

• Big theme of CSE 123:

choose between different implementations of same interface

