LEC 19

CSE 123

Victory Lap & Next Steps

Questions during Class?

Raise hand or send here

sli.do #cse123

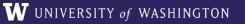
BEFORE WE START

Talk to your neighbors:

What was your favorite thing you learned about this quarter? Why?

Instructors: Brett Wortzman Miya Natsuhara

TAs:	Arohan	Neha	Rushil	Johnathan	Nicholas	
	Sean	Hayden	Srihari	Benoit	Isayiah	
	Audrey	Chris	Andras	Jessica	Kavya	
	Cynthia	Shreya	Kieran	Rohan	Eeshani	
	Amy	Packard	Cora	Dixon	Nichole	
	Trien	Lawrence	Liza	Helena		
Music CCE 127 25 will acture Tupos						


Music: <u>CSE 123 25wi Lecture Tunes</u>

Announcements

- C3 due tonight (3/14) at 11:59pm
- R7/R-Gumball due Sunday (3/16) at 11:59pm
 - Two forms to submit! Both on the Ed board.
 - R7 open to C3 if you need two extra days instead of another resub
 - R-Gumball open to all assignments w/ feedback released
- IPL closes end of day today (3/14)
 - Not open this weekend or next week
 - Message board will remain available

• Final Exam Tuesday (3/18) @ 12:30pm-2:30pm in KNE 110/120

- Seating chart now posted on the course website!
- Typical rules for quizzes, note sheet (8.5" x 11" double-sided, typed or handwritten)
- Please fill out course evaluation by Sunday night!

You Made It!

[Recap] Why 123?

1. To solve more complex problems by leveraging more complex programming structures / patterns

- 2. To better rationalize specific design decisions
 - How to "best" structure classes to reduce redundancy
 - Which ADT implementations are "most" appropriate to use

- 3. To understand and critically analyze intersections between Computer Science and society
 - Search engines, algorithmic art, machine learning, etc.
 - Developing informed opinions on current issues

Be a better programmer

Be a better person

[Recap] Topics Covered

- Advanced Object-Oriented Programming (OOP)
 - Inheritance, Polymorphism, Abstract classes
- Implementing Abstract Data Types (ADTs)
 - ArrayIntList (int[] elementData, int size)
 - LinkedIntList (ListNode front)
 - Java's ArrayList & LinkedList (int size, ListNode back)
- Runtime (Complexity & Big O notation)
- Recursion
 - Recursive definitions (n! = n * (n 1)!)
 - (Implicit) Base and Recursive cases
 - Public / private pairs
 - LinkedLists w/ recursion (x = change(x))
- Binary Trees
 - Binary Search Trees (BST) & Runtime
- Exhaustive Search / Recursive Backtracking
 - Dead ends / Choose, explore Un-choose
- Machine Learning & Hashing

Assessable content

You've learned A LOT!!! (hopefully)

Future Courses

CSE Majors

Course	Overview	
<u>CSE 311</u>	Mathematical foundations	<u>c</u>
<u>CSE 351</u>	Low-level computer organization/abstraction	(
<u>CSE 331</u>	Software design/implementation	<u>(</u>
<u>CSE 340</u>	Interaction Programming	<u>c</u>
<u>CSE 341</u>	Programming languages	(
<u>CSE 344</u>	Data Management (databases)	(

https://www.cs.washington.edu/academics/ugrad/current-students

- Tons of options for everyone!
 - Self study always valid too!

Also: bringing computational thinking to other fields!

Non-CSE Majors

Course	Overview
<u>CSE 154</u>	Intro to web programming
<u>CSE 163</u>	Intermediate programming, data analysis
<u>CSE 180</u>	Introduction to data science
<u>CSE 373</u>	Data structures and algorithms
<u>CSE 374</u>	Low-level programming and tools
<u>CSE 412</u>	Data Visualization
<u>CSE 416</u>	Intro. to Machine Learning

https://www.cs.washington.edu/academics/ugrad/nonmajor-options/nonmajor-courses

Applications of CS

or "What can I do with what I learned?"

- <u>Detect and prevent toxicity online</u>
- Digitize basketball players
- Help DHH people identify sounds
- Figure out how to best distribute relief funds
- <u>Recognize disinformation online</u>
- <u>Make movies</u>
- Improve digital collaboration
- Fix Olympic badminton
- And so much more!

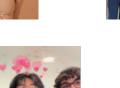
Future Projects

- At this point, you know 90% of the fundamentals you need to accomplish practically any project
 - Hurdle will typically be learning the syntax of a new language, using GitHub, importing external libraries, etc.
- Some ideas:
 - Make a Minecraft mod! (Java) [link]
 - Make a Discord bot! (Python) [link]
 - Make personal website! (HTML, CSS, Javascript) [link]
 - Convert a project from this course into a more user-friendly application
 - C1, make a Graphical User Interface (GUI) [link]
 - P3, refine the Email class until you get an accuracy you're happy with
 - Really, anything you want !!!*

Frequently Asked Questions

- How can I get better at programming?
 - Practice!
- How can I learn to X?
 - Search online, read books, look at examples
 - Start with something that already works (try github), then make changes!
- What should I work on next?
 - Anything you can think of! (See previous slide for some ideas)
- Should I learn another language? Which one?
 - Depends on what you want to do!
 - Python: Data Science & Machine Learning
 - JavaScript: Web Dev
 - C / C++: Systems Programming
- What's the best programming language?
 - 😟 (take CSE 341/CSE 413)

Thank your TAs!



Thank You!

- Thank you for participating, asking questions, engaging with course materials & resources!
 - And thank you for the feedback if you filled out the course evaluation :)
- Thank your amazing TAs!
- Any final questions before we wrap?

