W UNIVERSITY of WASHINGTON LEC 16: Binary Search Trees CSE 123 Winter 2025

Talk to your neighbors:

What’s your favorite English word?
What page is it on in the dictionary?

CSE 123 Brett Wortzman

Miya Natsuhara
Bi Na ry Sea rCh Trees TAS: Arohan Neha Rushil Johnathan Nicholas

Sean Hayden Srihari Benoit Isayiah

Audrey Chris Andras Jessica Kavya
Cynthia Shreya Kieran Rohan Eeshani
Amy Packard Cora Dixon Nichole

Trien Lawrence Liza Helena

Music: CSE 123 25wi Lecture Tunes

Raise hand or send here

slido #csel23

https://open.spotify.com/playlist/2ycEEh9Cc2llxbeC96sUlv?si=AjcBAsNlTEyTp8WWvb48-Q

W UNIVERSITY of WASHINGTON LEC 16: Binary Search Trees CSE 123 Winter 2025

Lecture Outline

e Binary Search Review
* Binary (Search) Trees Review

* More runtime!

W UNIVERSITY of WASHINGTON LEC 16: Binary Search Trees CSE 123 Winter 2025

Announcements

* Quiz 2 Completed! &
* Programming Assignment 3 due tonight at 11:59pm

* Creative Project 3 out tomorrow, due Wednesday, March 12 at
11:59pm

- Last assignment!

e Resubmission Cycle 6 is open, due on Friday, March 7 at 11:59pm
- P1, C2, P2 eligible
- Reminder: In R8 / R-Gumball, all assignments will be eligible!

* Final Exam: Tuesday, March 18 at 12:30pm — 2:20pm
- Left-handed desk request form, closes Tuesday, March 11

* Gumball & Gigi campus visit on Monday, March 17 12:00pm — 2:00pm

https://edstem.org/us/courses/70325/discussion/6304158

W UNIVERSITY of WASHINGTON LEC 16: Binary Search Trees CSE 123 Winter 2025

Lecture Outline

* Announcements

* Binary (Search) Trees Review

* More runtime!

W UNIVERSITY of WASHINGTON LEC 16: Binary Search Trees CSE 123 Winter 2025

Looking through a dictionary

//;;;in with the dictionary, from the first to last word,‘\\\\
looking for target

search(dictionary, left, right, target):

e Assuming a sorted order of
elements to search through

list if there are no more words to look through
e Suppose you're looking for give up
a specific element target else

pick a midpoint between left and right

pick the word at that midpoint

if target is that word
found it!

else if target comes before that word
search(dictionary, left, midpoint-1, target)

else (target comes after that word)
\\\\\ search(dictionary, midpoint 1, right, targefz////

* Return the index of the
given target, or -1 if it's
notinthe list

W UNIVERSITY of WASHINGTON

LEC 16: Binary Search Trees

Binary Search

e Assuming a sorted order of
elements to search through

list

* Suppose you're looking for
a specific element target

* Return the index of the
given target, or -1 if it's
notinthe list

CSE 123 Winter 2025

if (left > right):
return -1
else:
mid = (left + right) / 2
if (target == list[mid]):
return mid;

else

\\\\‘ return search(list, mid + 1, right, targetj////

search(list, left, right, target):

else if (target < list[mid]):
return search(list, left, mid - 1, target)

begin with search(list, 0, list.size() - 1, target) *\\\\

18

23 30 49 55

108

184

LEC 16: Binary Search Trees CSE 123 Winter 2025

W UNIVERSITY of WASHINGTON

Lecture Outline

* Announcements

* Binary Search Review

* More runtime!

W UNIVERSITY of WASHINGTON LEC 16: Binary Search Trees CSE 123 Winter 2025

Example Tree: contains

W UNIVERSITY of WASHINGTON LEC 16: Binary Search Trees CSE 123 Winter 2025

Binary Trees [Review]

* We'll say that any Binary Tree falls into one of the following categories:

null

Tree Tree

Empty tree Node w/ two subtrees

root == null root != null
root.left / root.right = Tree

This is a recursive definition! A tree is either empty or a node with two
more trees!

W UNIVERSITY of WASHINGTON LEC 16: Binary Search Trees CSE 123 Winter 2025

Binary Search Trees (BSTs)

* We'll say that any Binary Search Tree falls into the following categories:

" For BSTs in this)

class, we'll make
the simplifying
assumption of

%uplicates Y,

null

Empty tree Node w/ two subtrees

root == null root != null
root.left / root.right = Tree

max(root.left) < x & & min(root.right) > x

Note that not all Binary Trees are Binary Search Trees

W UNIVERSITY of WASHINGTON LEC 16: Binary Search Trees

Why BSTs?

* Our IntTree implementation to contains(int value)

private boolean contains(int value, IntTreeNode root) {
if (root == null) {
return false;

T else {
return root.data == value ||
contains(value, root.left) ||
contains(value, root.right);
}

}

 Which direction(s) do we travel if root.data != value?
- Both left and right

* In a Binary Search Tree, should we check both sides?
- Remember, additional constraint: max(root.left) < root.data &&
min(root.right) > root.data

CSE 123 Winter 2025

CSE 123 Winter 2025

W UNIVERSITY of WASHINGTON LEC 16: Binary Search Trees

Lecture Outline

* Announcements
e Binary Search Review

* Binary (Search) Trees Review

W UNIVERSITY of WASHINGTON LEC 16: Binary Search Trees CSE 123 Winter 2025

BSTs & Runtime (1)

 Contains operation on a balanced BST runs in 0(log(n))
- Leverages removing half of the values at each step
- New runtime class unlocked!

o[o | G ERRRTIRRE
P Of2)

Operations

O(n)

Oflog n), O(1)

Elements

W UNIVERSITY of WASHINGTON

Example Tree: contains for balanced BST

W UNIVERSITY of WASHINGTON LEC 16: Binary Search Trees CSE 123 Winter 2025

BSTs & Runtime (2)

 Contains operation on a balanced BST runs in 0(1log(N))
- Leverages removing half of the values at each step
- New runtime class unlocked!

* Comparison between data structures:

ArrayIntList LinkedIntList IntSearchTree

contains(x) O(N) O(N) O(log(N)) »

W UNIVERSITY of WASHINGTON LEC 16: Binary Search Trees CSE 123 Winter 2025

BSTs & Runtime (3)

 Contains operation on a balanced BST runs in 0(1log(N))
- Leverages removing half of the values at each step
- New runtime class unlocked!

* Comparison between data structures:

ArrayIntList LinkedIntList IntSearchTree

contains(x) O(N) O(N) O(N)

O(Log(N)) runtime is only guaranteed for BALANCED BSTs. If your tree
isn’t balanced, we see O(N) runtime!

W UNIVERSITY of WASHINGTON LEC 16: Binary Search Trees CSE 123 Winter 2025

BSTs In Java

* Self-balancing BST implementations (AVL / Red-black) exist
- AVL better at contains, Red-black better at adding / removing

* Both the TreeMap / TreeSet implementations use self-balancing BSTs
- Determines said ordering via the Comparable interface / compareTo method
- Printing out shows natural ordering — preorder traversal

* Complete table comparing data structures:

contains(x) O(N) O(N) O(log(N))
add(x) 0(1*) 0(1) O(log(N)*)
remove (X) O(N) O(N) O(log(N)*)

*It’s slightly more complicated but we’ll leave that for a higher level course

