CSE 123

Binary Tree Modification

Questions during Class?

Raise hand or send here

sli.do #cse123

BEFORE WE START

Talk to your neighbors:

What are you looking forward to as it gets warmer?

Instructors: Brett Wortzman Miya Natsuhara

TAs:	Arohan	Neha	Rushil	Johnathan	Nicholas
	Sean	Hayden	Srihari	Benoit	Isayiah
	Audrey	Chris	Andras	Jessica	Kavya
	Cynthia	Shreya	Kieran	Rohan	Eeshani
	Amy	Packard	Cora	Dixon	Nichole
	Trien	Lawrence	Liza	Helena	
Music: <u>CSE 123 25wi Lecture Tunes</u>					

Announcements

- Programming Assignment 2 due tonight at 11:59pm
- Programming Assignment 3 out tomorrow, due next Wednesday (3/5)
- Quiz 2 next Tuesday (3/4)
 - Practice quiz released later this week
- Quiz 1 grades out late this week

Review: Binary Trees

• A Binary Tree is either:

Empty tree

Node w/ two subtrees

This is a recursive definition! A tree is either empty or a node with two more trees!

Review: Binary Tree Programming

- Programs look very similar to Recursive LinkedList!
- Guaranteed base case: empty tree
 - Simplest possible input, should immediately know the return
- Guaranteed public / private pair
 - Need to know which subtree you're currently processing
- If modifying, we use x = change(x)
 - Don't stop early, return updated subtree (IntTreeNode)

Review: Binary Tree Traversals

- 3 different primary traversals
 - All concerned with when you process your current root
- Pre-order traversal:
 - Process root, left subtree, right subtree
- In-order traversal:
 - Process left subtree, **root**, right subtree
- Post-order traversal:
 - Process left subtree, right subtree, root

Sometimes different traversals yield different results

Modifying Binary Trees

- Like linked lists, cannot modify nodes
 - Because data field is final (there are good reasons for this)
- Will need to create and insert new nodes
- Use x = change(x), usually *3 times*
 - overall root (in public method)
 - left subtree
 - right subtree
- Order might matter!
 - Does operation on root depend on children?