CSE 123

Binary Trees

Questions during Class?

Raise hand or send here

sli.do #cse123

BEFORE WE START

Talk to your neighbors:

What's your favorite tree?

Instructors: Brett Wortzman Miya Natsuhara

TAs:	Arohan	Neha	Rushil	Johnathan	Nicholas
	Sean	Hayden	Srihari	Benoit	Isayiah
	Audrey	Chris	Andras	Jessica	Kavya
	Cynthia	Shreya	Kieran	Rohan	Eeshani
	Amy	Packard	Cora	Dixon	Nichole
	Trien	Lawrence	Liza	Helena	
Music: <u>CSE 123 25wi Lecture Tunes</u>					

Lecture Outline

- Announcements
- Binary Tree Review
- Traversals
- Practice!

Announcements

- Resubmission Cycle 4 is due tonight at 11:59pm
 - <u>C1</u>, P1 eligible
- Programming Assignment 2 is out, due Wednesday (Feb 26)
- Final Exam: Tuesday, March 18 at 12:30pm 2:20pm

Lecture Outline

- Announcements
- Binary Tree Review
- Traversals
- Practice!

- Last data structure of the quarter!
 - Very similar to LinkedLists...

- Last data structure of the quarter!
 - Very similar to LinkedLists...

- Last data structure of the quarter!
 - Very similar to LinkedLists...
- Linked TreeNodes w/ 3 fields:
 - int data, TreeNode left, TreeNode right
 - Doubly complicated!

- Last data structure of the quarter!
 - Very similar to LinkedLists...
- Linked TreeNodes w/ 3 fields:
 - int data, TreeNode left, TreeNode right
 - Doubly complicated!
- Similar to trees?

Tree Terminology

Tree Terminology

Linked Lists [Review]

• A linked list is either:

This is a recursive definition!

A list is either empty or a node with another list!

• A Binary Tree is either:

Empty tree

Node w/ two subtrees

This is a recursive definition! A tree is either empty or a node with two more trees!

Binary Tree Programming

- Programs look very similar to Recursive LinkedList!
- Guaranteed base case: empty tree
 - Simplest possible input, should immediately know the return
- Guaranteed public / private pair
 - Need to know which subtree you're currently processing
- If modifying, we use x = change(x)
 - Don't stop early, return updated subtree (IntTreeNode)
- Let's trace through an example together...

Tracing Through Binary Tree Programming

Lecture Outline

- Announcements
- Binary Tree Review
- Traversals
- Practice!

Binary Tree Traversals

- 3 different primary traversals
 - All concerned with when you process your current root
- Pre-order traversal:
 - Process root, left subtree, right subtree
- In-order traversal:
 - Process left subtree, root, right subtree
- Post-order traversal:
 - Process left subtree, right subtree, root

Sometimes different traversals yield different results

sli.do #cse123

Enter the order in which the nodes of this tree would be visited in a <u>pre-order</u> traversal.

Practice : Pair

sli.do #cse123

Enter the order in which the nodes of this tree would be visited in a <u>pre-order</u> traversal.

Practice : Pair

sli.do #cse123

Enter the order in which the nodes of this tree would be visited in an <u>in-order</u> traversal.

Practice : Pair

sli.do #cse123

Enter the order in which the nodes of this tree would be visited in a <u>post-order</u> traversal.

Lecture Outline

- Announcements
- Binary Tree Review
- Traversals
- Practice!

Tracing through size


```
public int size() {
    return size(overallRoot);
}
private int size(IntTreeNode currentRoot) {
    if (currentRoot == null) {
        return 0;
    } else {
        return 1 +
           size(currentRoot.left) +
           size(currentRoot.left);
    }
```