W UNIVERSITY of WASHINGTON LEC 12: Linked Lists and Recursion CSE 123 Winter 2025

Talk to your neighbors:

Best boba in Seattle?

CSE 123 Instructors: Brett Wortzman

Miya Natsuhara

Linked LiStS With TAS: Arohan Neha Rushil Johnathan Nicholas

Sean Hayden Srihari Benoit Isayiah

o
R e C u rS I O n Audrey Chris Andras Jessica Kavya

Cynthia Shreya Kieran Rohan Eeshani
Amy Packard Cora Dixon Nichole

Trien Lawrence Liza Helena

Music: CSE 123 25wi Lecture Tunes

Raise hand or send here

slido #csel23

https://open.spotify.com/playlist/2ycEEh9Cc2llxbeC96sUlv?si=AjcBAsNlTEyTp8WWvb48-Q

W UNIVERSITY of WASHINGTON LEC 12: Linked Lists and Recursion CSE 123 Winter 2025

Lecture Outline

* Traversing Linked Lists Recursively

* Modifying Linked Lists Recursively

W UNIVERSITY of WASHINGTON LEC 12: Linked Lists and Recursion CSE 123 Winter 2025

Announcements

« Creative Project 2 due tonight Feb 19 at 11:59pm

« Resubmission Cycle 4 is due Fri (Feb 21) at 11:59pm
- (1, P1 eligible

« Programming Assignment 2 released tomorrow (Thurs, Feb
20)

- Focused on exhaustive search + recursive backtracking!

« Quiz 1 grades out early next week

« R-gumball (R8) posted on calendar

- Offered simultaneously with R7
- All assignments eligible

W UNIVERSITY of WASHINGTON LEC 12: Linked Lists and Recursion CSE 123 Winter 2025

Lecture Outline

* Announcements

* Modifying Linked Lists Recursively

W UNIVERSITY of WASHINGTON LEC 12: Linked Lists and Recursion CSE 123 Winter 2025

Linked Lists

e A linked list is either:

data next

Nu l l 4 —-»@ther 15

Empty list Node w/ another linked list

This is a recursive definition!
A list is either empty or a node with another list!

W UNIVERSITY of WASHINGTON LEC 12: Linked Lists and Recursion CSE 123 Winter 2025

Recursive Traversals w/ LinkedLists

* Guaranteed base case: empty list
- Simplest possible input, should immediately know the return

e Guaranteed public / private pair
- Need to know which sublist you’re currently processing (i.e. curr)

D

method(one) method(two) method(three) method(null)

front

[(4+— 1| ——1 2|] 3| —1— null

UNIVERSITY of WASHINGTON LEC 12: Linked Lists and Recursion CSE 123 Winter 2025

Lecture Outline

* Announcements

* Traversing Linked Lists Recursively

W UNIVERSITY of WASHINGTON LEC 12: Linked Lists and Recursion

CSE 123 Winter 2025

Modifying LinkedLists [Review]

* Remember: using a curr variable to iterate over nodes

* Does changing curr actually update our chain?
- What will? Changing curr.next, changing front
- Need to stop one early to make changes

* Often a number of cases to watch out for:

M(iddle) — Modifying node in the middle of the list (general)
F(ront) — Modifying the first node

E(mpty) — What if the list is empty?

E(nd) — Rare, do we need to do something with the end of the list?

W UNIVERSITY of WASHINGTON LEC 12: Linked Lists and Recursion CSE 123 Winter 2025

Modifying LinkedLists Recursively

e Much easier than iterative solutions!

* No longer need to stop one early
- Can go right to the point you'd like to make the change

D

method(one) method(two) method(three) method(null)

front

[+— 1| —— 2| —— 3 | —— null

LEC 12: Linked Lists and Recursion CSE 123 Winter 2025

W UNIVERSITY of WASHINGTON

Modifying LinkedLists Recursively

e Much easier than iterative solutions!

* No longer need to stop one early
- Can go right to the point you'd like to make the change

* How? Return the updated change and catch it!

- Private pair returns ListNode type
- curr.next = change(curr.next) /front = change(front)

- Resulting solutions much cleaner than iterative cases

* We call this pattern x = change(x)

W UNIVERSITY of WASHINGTON LEC 12: Linked Lists and Recursion CSE 123 Winter 2025

removeAll Walkthrough

front

[E}-—-—-» 1 » 3 —— 6 ——] 33

private ListNode removeAll(int value, ListNode node) {
if (node == null) {
return node;
} else if (node.data == value) {
return removeAll(value, node.next);
} else {

node.next = removeAll(value, node.next);
return node;

