
Programming Assignment 2: Disaster Relief

Specification

(This assignment was partially inspired by Keith Schwarz's 2020 Nifty Assignment.)

Background
When natural disasters strike, governments, relief organizations, and even individual donors must
often wrestle with how best to allocate available resources to help those who have been affected. This
is generally a very complex decision, balancing countless logistical, economic, political, and other
factors. One particular challenge is that travelling between geographic areas affected by the disaster
can require different financial or other resources for relief. Organizations sometimes have to make
difficult decisions in the hope of helping as many people as possible with the available resources.

In this assignment, you will implement a system to determine how to chart a path through a group of
affected regions to help as many people for as little cost as possible.

NOTE: While our simulation will focus on helping the greatest number of people for the least amount of
money, this is an oversimplification of the problem of allocating resources in the wake of a disaster, and may
not necessarily be the best approach.

Learning Objectives
By completing this assignment, students will demonstrate their ability to:

Define a solution to a given problem using a recursive approach
Write functionally correct recursive methods
Produce clear and effective documentation to improve comprehension and maintainability of a
method
Write methods that are readable and maintainable, and that conform to provided guidelines for
style and implementation

System Structure
In our system, we model a partially-connected collection of geographic regions, each of which has a
population of people who need help within it. Some regions are connected to each other, and there is
a cost associated with travelling between those regions. (You can imagine that this cost is related to
factors like the distance between the regions and the difficulty of travelling that distance.) Other
regions are not connected to each other and relief efforts cannot travel between those regions. (This

Expand

Expand

might be, for example, because there is an impassable geographic feature blocking travel or because
the relief organization simply does not have the capability to traverse that distance, such as not
having access to air or sea travel.) For our system, we will assume that all connections and costs are
symmetric. (That is, the cost to get from region A to region B is the same as the cost to get from
region B to region A. If region C is not connected to region D, then region D is also not connected to
region C.)

Our goal is to identify a path through these regions (from a specified starting point) that will reach
and help as many people as possible for the lowest cost. Ideally, we will want to find a path that
reaches all regions, however that may not be possible. If it is not, we will seek the path that helps
the most people, not the path that visits the most regions.

Note that populations are associated with regions, but costs are associated with travel between regions.

Region class

In our system, we will represent areas that may be helped with the following Region class
(comments and some methods are omitted here; see the full Region class in the coding challenge
slide for these):

Path class

We will represent a path of regions that will receive resources with the following Path class
(comments and some methods are omitted here; see the full class in the coding challenge slide for
these):

The two methods extend and removeEnd can be used to add/remove a Region to/from a Path .
These are the only ways to modify a Path -- you cannot add or remove a Region to or from the
beginning or middle of a path.

Notice that these methods return a new Path rather than modifying an existing path , similar
to how String methods like substring or toUpperCase return a new String rather than
modifying an existing one:

Path empty = new Path();
Region one = new Region("Region #1", 50);

Path added = empty.extend(one);
Path removed = added.removeEnd();

Make sure you write your implementation accordingly.

Required Methods
For this assignment, you will implement only a single method:

public static Path findPath(List<Region> sites)

This method takes a list of Region objects as a parameter and will compute and return the path
through these regions that will result in the most people being helped. If there are multiple paths that
result in the most people being helped, return the path that has the lowest cost. If there are multiple
paths that help the most people and share the same lowest cost, you may return any of these paths.
In each path you consider, you should visit each of the sites at most once.

For simplicity, you should only consider paths that start with the first Region (the region at
index 0) in the given list of regions. You can think envision this as our organization currently being
located at the initial location, and they're interested in figuring out the best route to take from this
starting place.

If sites is null , an IllegalArgumentException should be thrown. If sites is empty, you should
return null to indicate that there is no valid path.

You should implement your findPath method where indicated in the provided Client.java file.
You may also implement any additional helper methods you might like. (For example, you will likely
want to implement a public-private pair in your algorithm.)

WARNING: We are requiring that you do not use the addConnections() method within findPath. The
addConnections() method should only be used for testing your code

Client Program
We have provided a client program that will allow you to test your findPath implementation. This
client provides two methods that might be useful.

public static List<Region> createSimpleScenario()

Manually creates a simple list of regions to represent a known scenario.
We have provided one example in the client code, and a few others in the examples
below.

public static List<Region> createRandomScenario(int numRegions, int minPop, int maxPop, double minCo

Creates a scenario with numRegions regions by randomly choosing the population,
connections, and costs of connections for each region.

Populations will be chosen between minPop and maxPop (inclusive)
Costs will be generated by choosing a random value between minCost and maxCost

Expand

Expand

Expand

Expand

Expand

(inclusive).
Each region will be connected to a random subset of the other regions.

Regions are connected both ways. (ex: if Region #1 is connected to Region #2, then
Region #2 is connected to Region #1).

You can modify createSimpleScenario with different Region objects to test your implementation
in scenarios of your own design, and/or you can generate random scenarios to try using
createRandomScenario .

Click "Expand" below to see some example scenarios, their results, and visualizations of exploring the
different possible paths (note that the diagrams do not show the process of choosing the "best" path).

You may create your own client programs if you like, and you may modify the provided client if you
find it helpful. However, your methods must work with the provided files without
modification and must meet all requirements below.

Testing Requirements
For this assignment, you'll be required to implement three total JUnit tests. The first two should
cover the following cases:

The third test should be a test case you come up with on your own. Our requirement for this third
test is that the inputted sites contains at least four regions and that there are at least
three unique connections between regions.

All three tests should be placed in their own methods within the provided Testing.java file. You're
welcome to implement tests other than the ones outlined here, but doing so is not required.

Implementation Requirements
To earn a grade higher than N on the Behavior and Concepts dimensions of this assignment, your
algorithm must be implemented recursively. You will want to utilize the public-private pair
technique discussed in class. You are free to create any helper methods you like, but the core of
your algorithm (specifically, building and potentially evaluating possible allocations of relief funds)

must be recursive.

Additionally, for this assignment, you should follow the Code Quality guide when writing your code
to ensure it is readable and maintainable. In particular, you should focus on the following
requirements:

Avoid recursing any more than you need to. Your method should not continue to explore a path
if the current Path is no longer viable.
Watch out for branches of an if / else statement that shares the same exact code. You should
combine the conditionals and write the code only once.
Make sure that all parameters within a method are used and necessary.
You should comment your code following the Commenting Guide.

Make sure to avoid including implementation details in your comments. In particular, for
your object class, a client should be able to understand how to use your object effectively
by only reading your class and method comments, but your comments should maintain
abstraction by avoiding implementation details.
Continuing with the previous point, keep in mind that the client should not be aware of
what implementation strategy your class/methods utilize.

All methods present in your class that are not listed in the specification must be private.

Disaster Relief

P2_DisasterRelief.zip

Download Starter Code

Remember that you're required to write three tests, each within their own method in Testing.java .
More information on this requirement can be found in the spec.

Reflection

Question 1

No response

Question 2

The following questions will ask you practice metacognition to reflect on the topics covered on this
assignment and your experience completing it. For each question, focus on your plan and/or process
for working through the assignment along with the CS concepts. Think about things like how you
organized your working time, what sorts of things tended to go wrong, and how you dealt with those
errors or mistakes.

Please answer all questions.

The first 3 questions will require you to reflect about potential benefits and drawbacks in employing
algorithms to improve societal welfare. Start by watching a short segment of the following talk from
UC Berkeley professor Rediet Abebe (2m 9s to 8m 57s):

An error occurred.

Try watching this video on www.youtube.com, or enable JavaScript if it is disabled in your browser.

(https://youtu.be/h1NqpK4gDrM?t=129)

How do you think measurement challenges (such as data sparsity and inaccurate metrics) affect the
effectiveness of algorithms in resource allocation for disaster relief?

No response

Question 3

No response

Question 4

No response

Question 5

No response

Question 6

No response

Question 7

No response

Question 8

No response

Question 9

What are the potential risks of relying on simple metrics (like income or population density) when
allocating disaster relief resources, and how might these risks be mitigated?

Explain what income shocks are. How might similar ‘shocks’ or unforeseen events affect disaster
relief efforts, and how could an algorithm be designed to handle these sudden needs?

Describe how you went about testing your implementation. What specific situations and/or test cases
did you consider? Why were those cases important?

What skills did you learn and/or practice with working on this assignment?

What did you struggle with most on this assignment?

What questions do you still have about the concepts and skills you used in this assignment?

About how long (in hours) did you spend on this assignment? (Feel free to estimate, but try to be
close.)

Was any part of the specification or requirements unclear? If so, which part(s), how was it unclear,
and how could it have been made more clear?

No response

Question 10

No response

[OPTIONAL] Do you have any other feedback, questions, or comments about this assignment?

(Note that we may not be able to respond to questions here, so please post on the message board if
you would like a response!)

� Final Submission �

Question

No response

� Final Submission�
Fill out the box below and click "Submit" in the upper-right corner of the window to submit your
work.

I attest that the work I am about to submit is my own and was completed according to the course
Academic Honesty and Collaboration policy. If I collaborated with any other students or utilized any
outside resources, they are allowed and have been properly cited. If I have any concerns about this
policy, I will reach out to the course staff to discuss before submitting.

(Type "yes" as your response.)

[SCAFFOLD] Disaster Relief

P2_DisasterRelief.zip

Download Starter Code

Remember that you're required to write four tests, each within their own method in Testing.java .
More information on this requirement can be found in the spec.

Visualizations

https://docs.google.com/presentation/d/1_TacWWKGg_RrQiUUoRnVcmIdWbugFU2pPMPriZZ9HBM/e
dit?usp=sharing

