
Creative Project 3: B(e)ST of the B(e)ST

Specification

Learning Objectives
By completing this assignment, students will demonstrate their ability to:

Implement a custom class that implements the Comparable interface.
Implement a functionally correct Java class to represent a binary search tree structure.
Write tests to verify correctness and functionality.
Design classes that are readable and maintainable, and that conform to provided guidelines for
style, implementation, and performance.
Produce clear and effective documentation to improve comprehension and maintainability of
programs, methods, and classes.

Assignment Details

Program Overview

In this assignment, you will implement a system to represent a real-world collection that interests
you. You will represent your collection using a binary search tree (BST) to enable fast (O(log n))
operations and maintain the collection in sorted order according to a comparison operation that you
will define.

At a high level, you will:

Design a custom class to represent items in your collection.
Implement core BST operations, ensuring the structure maintains sorted order.
Implement a file format to provide file-based input/output functionality.
Develop a unique tree method that either traverses or modifies the tree, using recursion.
Write test cases to validate your tree’s behavior.

Example Themes

A music enthusiast might create a Song class storing song titles, artists, and durations.
A sneakerhead could implement a Shoe class categorizing shoes by brand, size, and rarity.
A card collector might create a TradingCard class storing trading cards with attributes like
rarity and value.

Have fun with this! Make something that aligns with your hobbies and interests!

We have provided you with a sample implementation of a YarnExample class, its (unfinished)
corresponding CollectionManagerExample , and an example ClientExample file. We encourage you
to look over these files to see some examples of how one might implement an item and collection
manager. You may not implement Yarn as your item.

Note: the term "Collection" in this assignment refers to a collection of things in the real world and is not at all
related to the Java Collections Framework.

System Structure
The program consists of 3 primary components:

1. Item class

For generalizability, we will be referring to the class you implement in this section as "Item". However, you
should not name your class Item, and instead, should choose a class name that accurately describes the items
items you are implementing.

You should define a class to represent the items (songs, shoes, cards, etc.) in your collection. You may
choose whatever fields you believe best represent your class, but you must have at least two
characteristics of your items to represent as fields. Your class should also implement the Comparable
interface to provide a way to compare items in your collection to each other.

At minimum, your item class must implement the following methods:

public String toString()

Produces a readable string representation of your item. You can choose the format, but it
should be clear and include relevant details.

public boolean equals(Object o)

This method compares two objects, returning true if they are equal and false if not. Your
implementation should compare all key fields in your item class and return true only if
all those fields contain the same values in both objects.

public int hashCode()

This method generates a unique integer (hash) for each object. Hash codes must not involve
any randomness, and objects that are equal (as determined by the equals method) must have
the same hash code. You should use the hashcode() algorithm presented in lecture for
this method.

public static Item parse(Scanner input)

Expand

This method prompts the user for item attributes via the provided Scanner , then constructs
and returns a new instance of the item class
Throws an IllegalArgumentException if input is null.

Note that this method is static ! Expand below to read more about why:

public int compareTo()

Finally, your item class should implement the Comparable interface , and you should
implement a comparison algorithm of your choice. Your comparison must make use of
multiple fields and/or methods of your class.
Note that your compareTo() method should be consistent with equals() — if two objects are
considered equal, compareTo() should return 0 and vice versa.

2. Node Class

For generalizability, we will be referring to the class you implement in this section as "Node". However, you
should not name your class Node, and instead, should choose a class name that accurately reflects the items
being stored.

You should define an inner node class within CollectionManager.java to represent your Item within
a tree. Your class should store:

A single Item field that represents the item.
References to left and right child nodes

3. CollectionManager.java

NOTE: To earn a grade higher than N on this assignment, your core algorithms for each method in this
class must be implemented recursively. You will want to utilize the public-private pair technique
discussed in class. You are free to create any helper methods you like, but the core of your implementations
must be recursive.

This class represents a full collection of Items, implemented as a binary search tree, and provides the
required BST operations. Your CollectionManager class must implement the following methods:

public CollectionManager()

Initializes an empty collection.

public CollectionManager(Scanner input)

Loads a collection from a file using the provided Scanner . Nodes should be added to the
collection (and the underlying binary tree) in the same order in which they appear within the

file.
The format of the input file should match the output format of the save method.
Throws an IllegalArgumentException if the input is null .

public void add(Item item)

Adds the provided item to the collection.
This operation must maintain the binary search tree property.

Throws an IllegalArgumentException if item is null .
Your implementation should take advantage of the ordering properties of the binary search tree
and traverse as few nodes as possible.

public boolean contains(Item item)

Returns true if the collection contains the specified item, and false otherwise.
Throws an IllegalArgumentException if the item is null .
Your implementation should take advantage of the ordering properties of the binary search tree
and traverse as few nodes as possible.

public String toString()

Returns a readable string representation of the collection. You can choose the format, but it
should be clear and include relevant details.
The items in the collection must appear in sorted order (as defined by the compareTo method
in your Item class) in the resulting string.

public void save(PrintStream output)

Saves this current collection to the given PrintStream . The items in your collection should be
printed to the file following a pre-order traversal.
The format of the output file must be consistent with the format of the input file that can be
passed to CollectionManager(Scanner input) constructor.
Throws an IllegalArgumentException if the output is null .

Creative Extension
To earn an E on this assignment, you must implement one of the following extensions in your
CollectionManager class:

Filter

Write a method that returns a List of items in your collection that match a property of your choice.
You get the decide the property! You may choose to filter by an exact match, a range, containing a
keyword, or any other property or properties you like!

For example:

In a Yarn collection, calling filter("a", pink) might return all yarns with names that start
with "a" and that are pink.
In a Sneaker collection, calling filter(10) might return all shoes of size 10.

You can define what parameters your filter method takes, but it must return a List<Item> . This
method must be implemented recursively.

Remove

Note that this extension may be more complex than filter . Do this if you're up for a challenge!

Write a method that removes all items from your collection that match a condition of your choice.
You get the decide the condition! You may choose to remove if an item is an exact match, within a
range, contains a keyword, or any other condition you like! The collection must preserve the BST
property after each removal, though the tree does not have to be balanced.

For example:

In a Yarn collection, calling remove(4) might remove all yarns of weight 4
In a Sneaker collection, remove(2017, 2019) might remove all shoes released between 2017
and 2019.

You can define what parameters your remove method takes. This method must be implemented
recursively.

Custom Extension

If you would like, you may propose a different extension of your choice. Your proposed extension
must be roughly similar in complexity to the above options. If you would like to propose a custom
extension, you must post it in this Ed thread and receive approval. Requests for a custom extension
must be made by 11:59pm on Sunday, March 9 to allow enough time for review and approval
before the deadline. (We will monitor the thread and approve on a rolling basis.)

Testing Requirement
Since this project is open-ended, there are no provided EdStem tests. It is your responsibility to
make sure your code compiles and behaves as expected. Additionally, we are asking you to provide
the following:

1. 3 sample input files that can construct a tree using the Scanner constructor

2. A non-trivial test for every public method that you write in your CollectionManager class and
your Item class except for parse() . These tests must be in a single file called Testing.java

Using the Client File
We have provided a Client.java file for you to run your collection manager! Note that there are 3
TODOs indicated by // TODO: in the code for you to modify such that it runs your collection. Take a
look at the ClientExample.java for an example of how these TODOs can be resolved.

Implementation Guidelines
For this assignment, you should follow the Code Quality guide when writing your code to ensure it is
readable and maintainable. In particular, you should focus on the following requirements:

Node Design: The compareTo() method must establish a consistent sorting order.
Tree Behavior: The BST should remain valid (left < root < right).
Constructors in inner class:

Any constructors created should be used.
When applicable, reduce redundancy by using the this() keyword to call another
constructor in the same class.
Clients of the class should never have to set fields of an object unconditionally after
construction — there should be a constructor included for this situation.

x = change(x) :
Similar to with linked lists, do not "morph" a node by directly modifying fields (especially
when replacing an intermediary node with a leaf node or vice versa). Existing nodes can
be rearranged in the tree, but adding a new value should always be done by creating and
inserting a new node, not by modifying an existing one.
An important concept introduced in lecture was called x = change(x) . This idea is
related to the proper design of recursive methods that manipulate the structure of a
binary tree. You should follow this pattern where necessary when modifying your
trees.

Avoid redundancy:
If you find that multiple methods in your class do similar things, you should create helper
method(s) to capture the common code. As long as all extra methods you create are
private (so outside code cannot call them), you can have additional methods in your class
beyond those specified here.
Look out for including additional base or recursive cases when writing recursive code.
While multiple calls may be necessary, you should avoid having more cases than you
need. Try to see if there are any redundant checks that can be combined!

Data Fields:
Properly encapsulate your objects by making data fields in your CollectionManager
class private. (Fields in your node class should be public following the pattern from class.)
Avoid unnecessary fields; use fields to store important data of your objects but not to
store temporary values only used in one place.
Fields should always be initialized inside a constructor or method, never at declaration.

Commenting
Each method should have a comment including all necessary information as described in
the Commenting Guide. Comments should be written in your own words (i.e. not copied
and pasted from this spec).
Make sure to avoid including implementation details in your comments. In particular, for
your object class, a client should be able to understand how to use your object effectively
by only reading your class and method comments, but your comments should maintain
abstraction by avoiding implementation details.
Continuing with the previous point, keep in mind that the client should not be aware of
what implementation strategy your class/methods utilize.

Coding Workspace

C3_B(e)ST_of_the_B(e)ST.zip

Download Starter Code

Remember you must also, in addition to implementing your item class and CollectionManager class,
you must also satisfy the testing requirements listed below. These are copied from the specification
on the previous slide.

Testing Requirement
Since this project is open-ended, there are no provided EdStem tests. It is your responsibility to
make sure your code compiles and behaves as expected. Additionally, we are asking you to provide
the following:

1. 3 sample input files that can construct a tree using the Scanner constructor

2. A non-trivial test for every public method that you write in your Item class and
CollectionManager class except for parse() . These tests must be in a single file called
Testing.java

Reflection

Question 1

No response

Question 2

Your Item class represents a unique collection that you have chosen. Proper documentation is essential for
ensuring that your class is understandable and maintainable.

1. Describe Your Item Class:

What real-world collectible does your class represent? Why did you choose it?
What attributes have you chosen to store? Why?
What attributes did you decide to use for comparison? Why?

2. Formatting & Representation:

How should a user expect to format input when using your Scanner constructor?
What details are included in your toString() output? How do they contribute to readability?
How does saveToFile() format your data for later retrieval?

For full credit, all questions must be clearly answered.

Java’s TreeSet is an implementation of a Binary Search Tree that automatically keeps elements
sorted and allows for fast lookups. But why does Java use a BST for this? And what are the trade-offs?

Step 1.

Before answering the reflection questions, explore Java’s TreeSet documentation:
� Java TreeSet Documentation

Step 2.

Write a response to one of the following prompts.

Prompt 1: Why do you think Java chooses a BST for TreeSet instead of an ArrayList or some other
implementation? What advantages does this give when adding, removing, or searching for elements?
Describe a situation where an ArrayList might actually be a better choice?

Prompt 2: When you add elements to a TreeSet , they are automatically sorted because of the
underlying BST. What do you think "sorted order" means for different types of data? What happens if
you add objects that don’t have a natural ordering (like custom classes that you wrote, but without
Comparable)? Provide a real-world example where automatic sorting could be useful.

No response

Question 3

No response

Question 4

No response

Question 5

No response

Question 6

No response

Question 7

Prompt 3: BSTs provide fast searching, inserting, and deleting—but only if they stay balanced. What
happens if a BST becomes unbalanced (e.g., due to inserting elements in sorted order)? How do you
think Java prevents this issue in TreeSet ? (Hint: It doesn’t use a plain BST—look up “Red-Black Tree” if
you're curious!). Have you ever used a program where speed slowed down because of bad data
organization?

Please label which prompt you are answering. For full credit, all questions within a prompt
must be clearly answered. In particular, we suggest using the ACE (answer, cite, and explain)
format. For a meaningful response, it may be helpful to pose some counterexamples, connect in
terms of your own experience, add additional support from course materials, and be as specific as
possible in your own reasoning

You’ve now designed and implemented a program that reflects something meaningful to you—a
collection from your own interests, hobbies, or passions!

How did it feel to create something personally relevant using code? Looking ahead, what other
programs might you build that connect to your real life, experiences, or interests? How do you think
building meaningful programs can shape the way you approach coding in the future?

What skills did you learn and/or practice with working on this assignment?

What did you struggle with most on this assignment?

What questions do you still have about the concepts and skills you used in this assignment?

About how long (in hours) did you spend on this assignment? (Feel free to estimate, but try to be

No response

Question 8

No response

Question 9

No response

close.)

Was any part of the specification or requirements unclear? If so, which part(s), how was it unclear,
and how could it have been made more clear?

[OPTIONAL] Do you have any other feedback, questions, or comments about this assignment?

(Note that we may not be able to respond to questions here, so please post on the message board if
you would like a response!)

� Final Submission �

Question

No response

� Final Submission�
Fill out the box below and click "Submit" in the upper-right corner of the window to submit your
work.

I attest that the work I am about to submit is my own and was completed according to the course
Academic Honesty and Collaboration policy. If I collaborated with any other students or utilized any
outside resources, they are allowed and have been properly cited. If I have any concerns about this
policy, I will reach out to the course staff to discuss before submitting.

(Type "yes" as your response.)

[SCAFFOLD] Coding Workspace

C3_BST.zip

Download Starter Code

Remember you must also, in addition to implementing your item class and CollectionManager class,
you must also satisfy the testing requirements listed below. These are copied from the specification
on the previous slide.

Testing Requirement
Since this project is open-ended, there are no provided EdStem tests. It is your responsibility to
make sure your code compiles and behaves as expected. Additionally, we are asking you to provide
the following:

1. 3 sample input files that can construct a tree using the Scanner constructor

2. A non-trivial test for every public method that you write in your Item class and
CollectionManager class. These tests must be in a single file called Testing.java

