
Creative Project 1: Abstract Strategy Games

Specification

Background
Strategy games are games in which players make a sequence of moves according to a set of rules
hoping to achieve a particular outcome (e.g. a higher score, a specific game state) to win the game.
Strategy games usually give players free choice about which moves to make (within the rules) and
have little to no randomness or luck (e.g. rolling of dice, drawing of cards) involved. Abstract strategy
games are a subset of strategy games usually characterized by

1. Perfect information (i.e. all players know the full game state at all times)
2. Little to no theme or narrative around gameplay

Popular examples of abstract strategy games include: Chess, Checkers, Go, Tic-Tac-Toe, and many
others.

In this assignment, you will implement a data structure to represent the game state of an abstract
strategy game of your choice.

Learning Objectives
By completing this assignment, students will demonstrate their ability to:

Define a data structure to represent complex data
Write a Java class that extends a given abstract class
Produce clear and effective documentation to improve comprehension and maintainability of a
class
Write a class that is readable and maintainable, and that conforms to provided guidelines for
style, and implementation

Choosing a Game
You may implement any abstract strategy game you choose, subject to the following requirements:

The game must be playable by exactly two players.
It is OK if the game you choose can be played by a different number of players as well,
but you will implement the game for exactly two players.

Players must take turns making moves.
Both players must make moves following the same basic rules (i.e. gameplay must be

Expand

Expand

symmetrical).
There must be no hidden information and no randomness in gameplay.
The game must have a clear end condition.
When the game has ended, there must be a clearly determined winner (or the game ends in a
tie).

Here are some suggestions for games to implement:

Chomp
Connect Four
Paper Tennis

See Wikipedia, Freeze-Dried Games, or Pencil and Paper Games for more inspiration. If you would
like to implement a game other than the three listed above (Chomp, Connect Four, or Paper Tennis),
please post in this Ed thread to request approval. Note that you may not implement the game tic-
tac-toe (see below). Requests for a custom game must be made by 11:59pm on Sunday, January
26 to allow enough time for review and approval before the deadline. (We will monitor the thread
and approve on a rolling basis.)

The reflection portion of this assignment asks you to find someone to play your game, once finished,
and observe their experience. Note that this will take some time and coordination to arrange, so make sure
not to leave this part of the reflection until the last minute!

Required Abstract Class
You will implement a class to represent your chosen game. Your class should extend that
AbstractStrategyGame abstract class, which contains the following abstract methods:

The AbstractStrategyGame abstract class also contains the following implemented methods. Your
class should work with the provided abstract class and should not modify it.

Your class should also include at least one constructor, which may take any parameters you deem
necessary. You may implement any additional private helper methods you like as well.

Implementation Requirements
Your game should be able to be run using the provided client program in Client.java . You should
modify line 6 of this file to construct an instance of your class, and you may create any additional
variables or data to pass to your constructor as parameters, but you should not have to otherwise
modify the file. Implement your class so that this client works as written.

Expand

Expand

Expand

We have provided you with two sample implementations of tic-tac-toe (TicTacToe1D.java and
TicTacToe2D.java). Both of these samples implement the correct functionality for the game, but
differ in their design and underlying structure. We encourage you to look over both of these files to
see some examples of how one might implement an abstract strategy game, and consider the
tradeoffs that result from the two different approaches. You may not implement tic-tac-toe as
your game.

As you implement your own abstract strategy game, you will need to consider similar tradeoffs of
different approaches and make design decisions as you write your code!

Grading Guidelines
As described in the Creative Project Grading Rubric, your implementation must meet basic
requirements to earn an S, and must have an extension implemented to earn an E.

Take extra care to ensure that the correct files are added and work with the provided Client.java and
AbstractStrategyGames.java files

For the three suggested games, the basic and extended requirements are as follows:

Chomp

Connect Four

Paper Tennis

If you would like to implement a different game, you will need specify what the basic and extended
requirements will be as part of your proposal. Your proposed requirements should be similar in
scope and complexity to the requirements for the four suggested games. Post in this Ed thread to
propose a different game.

Testing Requirements
There are no formal JUnit testing requirements for this assignment, but Question 4 of the
Reflection should be answered in-depth. Additionally, it is your responsibility to make sure the game
you implement functions appropriately. We still highly encourage you to use JUnit to verify this for
yourself programmatically.

Assignment Requirements
For this assignment, you should follow the Code Quality guide when writing your code to ensure it is
readable and maintainable. In particular, you should focus on the following requirements:

You should make all of your fields private and you should reduce the number of fields only to
those that are necessary for solving the problem.
You should avoid hard-coded numbers in your implementation. Instead of hard-coding specific
numbers, which we call using magic numbers, it's usually better to use a variable, or some
property of an object.
Each of your fields should be initialized inside of your constructor(s).
You should comment your code following the Commenting Guide. You should write comments
with basic info (a header comment at the top of your file), a class comment for every class, and
a comment for every method other than main.

Make sure to avoid including implementation details in your comments. In particular, for
your object class, a client should be able to understand how to use your object effectively
by only reading your class and method comments, but your comments should maintain
abstraction by avoiding implementation details.

Any additional helper methods created, but not specified in the spec, should be declared
private.

Spec Walkthrough

An error occurred.

Try watching this video on www.youtube.com, or enable JavaScript if it is disabled in your
browser.

Abstract Strategy Games

C1_AbstractStrategyGames.zip

Download starter code:

Reflection

Question 1

Question 2

No response

Question 3

The reflection portion of this assignment asks you to find someone to play your game, once finished,
and observe their experience. Note that this will take some time and coordination to arrange, so make sure
not to leave this part of the reflection until the last minute!

The following questions will ask you practice metacognition to reflect on the topics covered on this
assignment and your experience completing it. For each question, focus on your plan and/or process
for working through the assignment along with the CS concepts. Think about things like how you
organized your working time, what sorts of things tended to go wrong, and how you dealt with those
errors or mistakes.

Please answer all questions.

REQUIRED
You MUST answer this question to receive credit for the assignment

Which game did you implement?

Chomp

Connect Four

Paper Tennis

Other

Describe how you implemented the state of your chosen game and why you chose that
implementation.

Describe an alternate implementation you could have chosen for your game. Include at least one

No response

Question 4

No response

Question 5

No response

specific detail about this alternate implementation (e.g. what fields would you have? How would you
represent a move being made?) .

Then, list at least one advantage and one disadvantage you think this alternative has compared to the
implementation you chose.

Write a short test plan for your game. Your plan should include a list of important cases to check, the
inputs necessary to test those cases, and why those cases are important to test. At minimum, your
plan must cover the following cases:

1. Player 1 winning
2. Player 2 winning
3. At least one additional edge case of your choice

The following 3 questions will be concerned with HCI (Human-computer Interaction) a subfield of CS
related to application design and guiding principles for good design.

You're going to conduct a "behavioral mapping" study with your current implementation. (This is just
a fancy way of saying "observation of someone playing your game"). You'll have to follow the
following steps:

1. First, get a user to play your game - peer, friend, family, roommate, etc.
2. Tell them that you'd like them to test out a game that you made, and their goal is to win.
3. Provide no further instruction than that (you want their unbiased reactions and attempt to use

your system without explanation).
4. Play the game with them (~5 mins in length).

While playing, take note of the following questions:

Were there any instances in which the user was confused as to how to play the game or how
the game worked?
Were there any instances in which the user made a mistake / was confused about how to enter
input for the game?

Report your findings (indirect feedback) here along with how the user of your study relates to you
(peer, friend, family, roommate, etc.)

Question 6

No response

Question 7

No response

Question 8

No response

Question 9

No response

Question 10

No response

Question 11

No response

Question 12

Now, ask the user for direct feedback regarding your implementation of the game. Some questions
include:

Did you understand how to play the game from the provided instructions alone?
What was most confusing about how to record a move?
In a perfect world, how do you think the interface should change to make this game easier to
play?

Report your findings.

Based on your responses to the previous two questions, if you were to make one change to your
implementation centered around usability, what would it be? (This answer doesn't have to be
feasible with your current knowledge of Java / CS - can be anything!)

What skills did you learn and/or practice with working on this assignment?

What did you struggle with most on this assignment?

What questions do you still have about the concepts and skills you used in this assignment?

About how long (in hours) did you spend on this assignment? (Feel free to estimate, but try to be
close.)

No response

Question 13

No response

Was any part of the specification or requirements unclear? If so, which part(s), how was it unclear,
and how could it have been made more clear?

[OPTIONAL] Do you have any other feedback, questions, or comments about this assignment?

(Note that we may not be able to respond to questions here, so please post on the message board if
you would like a response!)

� Final Submission �

Question

No response

� Final Submission�
Fill out the box below and click "Submit" in the upper-right corner of the window to submit your
work.

I attest that the work I am about to submit is my own and was completed according to the course
Academic Honesty and Collaboration policy. If I collaborated with any other students or utilized any
outside resources, they are allowed and have been properly cited. If I have any concerns about this
policy, I will reach out to the course staff to discuss before submitting.

(Type "yes" as your response.)

[SCAFFOLD] Abstract Strategy Games

This code slide does not have a description.

