
CSE 123 Summer 2025LEC 06: Runtime Analysis

CSE 123
L E C 0 7

Questions during Class?

Raise hand or send here

sli.do #cse123

Runtime Analysis

Talk to your neighbors:

BEFORE WE START

What was the latest Youtube
rabbit hole you went down?

Instructors: Ziao Yin

TAs: Trien Nichole Chris Packard Eeshani

CSE 123 Summer 2025LEC 06: Runtime Analysis

Announcements

• Resubmission Period 1 closes tonight at 11:59pm

• Programming Project 1 out now, due Jul 23 at 11:59pm

CSE 123 Summer 2025LEC 06: Runtime Analysis

Runtime Analysis

• What’s the “best” way to write code?
- Depends on how you define best: Code quality, memory usage, speed, etc.

• Runtime = most popular way of analyzing solutions
- Slow code = bad for business

• How do we figure out how long execution takes?
- Stopwatch = human error

- Computers = computer error (artifacts, operating systems, language)

- Need a way to formalize abstractly…

CSE 123 Summer 2025LEC 06: Runtime Analysis

Runtime Analysis

• We’ll count simple operations as 1 unit
- variable initialize / update int x = 0;

- array accessing arr[0] = 10;

- conditional checks if (x < 10) {

• Goal: determine how the number of operations scales w/ input size
- Don’t care about the difference between 2 and 4

- Find the appropriate complexity class

• Result: evaluation tactic independent of OS, language, compiler, etc.
- Simple operation = constant regardless of if it is truly 1

CSE 123 Summer 2025LEC 06: Runtime Analysis

Complexity Classes
• Input will always be an array arr of length n

• Constant (1)
- # Ops doesn’t relate to n return arr[0];

• Linear (n)
- # Ops proportional to n for (int i = 0; i < arr.length; i++)

• Quadradic (n^2)
- # Ops proportional to n^2 for (int j = 0; j < arr.length; j++)

 for (int j = 0; j < arr.length; j++)

• Lets say # Ops = n^2 + 100000n
- If n was really, really, really big, which term matters more?

- Only care about the dominating term for complexity!

CSE 123 Summer 2025LEC 06: Runtime Analysis

Complexity Classes

What’s the complexity class of the following?

public static void mystery(int[] arr) {
 if (arr.length == 0) {
 throw new IllegalArgumentException();
 }
 return arr[arr.length – 1];
}

1

1

2

Constant Complexity (1)

CSE 123 Summer 2025LEC 06: Runtime Analysis

Complexity Classes

What’s the complexity class of the following?

public static int mystery(int[] arr) {
 int sum = 0;
 for (int i = 0; i < arr.length; i++) {
 sum += arr[i];
 }
 return sum;
}

Linear Complexity (n)

1

1

3n + 2 33n

CSE 123 Summer 2025LEC 06: Runtime Analysis

Complexity Classes

What’s the complexity class of the following?

public static int mystery(int[] arr) {
 for (int i = 0; i < arr.length; i++) {
 for (int j = 0; j < arr.length; j++) {
 System.out.print(arr[i] + “ “);
 }
 System.out.println();
 }
}

2

1

2n
n(2n + 1)

= 2n^2 + n

Quadratic Complexity (n^2)

CSE 123 Summer 2025LEC 06: Runtime Analysis

Complexity Classes

What’s the complexity class of the following?

public static int mystery(int[] arr) {
 for (int i = 0; i < arr.length; i++) {
 for (int j = i; j < arr.length; j++) {
 System.out.print(arr[i] + “ “);
 }
 System.out.println();
 }
}

Quadratic Complexity (n^2)

CSE 123 Summer 2025LEC 06: Runtime Analysis

Big-Oh Notation

• Programmers… are pessimists (or maybe realists)
- Case in point: dominating term

• In the real world, best-case complexity isn’t super useful
- Want to make sure solutions work well in the worst possible situations

• We use Big-Oh notation to demonstrate worst-case complexity!

public static int indexOf(int[] arr, int x) {
 for (int i = 0; i < arr.length; i++) {
 if (arr[i] == x) return i;
 }
 return -1;
}

Worst-case
linear

O(n)

CSE 123 Summer 2025LEC 06: Runtime Analysis

ArrayList vs LinkedList

Operation ArrayIntList LinkedIntList

size() O(1) O(n)

get(index) O(1) O(n)

add(val) O(1) O(n)

add(0, val) O(n) O(1)

add(index, val) O(n) O(n)

remove(0) O(n) O(1)

remove(n-1) O(1) O(n)

remove(index) O(n) O(n)

CSE 123 Summer 2025LEC 06: Runtime Analysis

How should we implement a stack?

• With an ArrayIntList?
- push = what?

- pop = what?

• With a LinkedIntList?
- push = what?

- pop = what?

CSE 123 Summer 2025LEC 06: Runtime Analysis

Is running time an implementation detail?

• Yes

• No

• Does that help? :D

	Slide 1: Runtime Analysis
	Slide 2: Announcements
	Slide 3: Runtime Analysis
	Slide 4: Runtime Analysis
	Slide 5: Complexity Classes
	Slide 6: Complexity Classes
	Slide 7: Complexity Classes
	Slide 8: Complexity Classes
	Slide 9: Complexity Classes
	Slide 10: Big-Oh Notation
	Slide 11: ArrayList vs LinkedList
	Slide 12: How should we implement a stack?
	Slide 13: Is running time an implementation detail?

